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1 Response to Recommender

I have now received two reviews of your manuscript. Both reviewers and I are in agreement that this is

an interesting study considering how scaling up uncertain predictions of individual properties in complex

systems affects the estimation of system-level properties. The results have important implications in ecol-

ogy as well as in other research disciplines. However, several issues have been identified which, in my

views, require revision before recommendation. Such revised contribution would need to address all of the

reviewer comments. In particular, reviewer #1 raises an issue regarding the assumptions on the specific

distribution of the “error” used in the mathematical derivation. In addition, reviewer #2 highlights several

points that would deserve to be further clarified and discussed (e.g. further discussion of the implications of

the results for other research areas, including consequences of intraspecific variations). In addition to the
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comments of the reviewers, I have a few additional suggestions to help improve the clarity of the manuscript:

We thank the Recommender for their work and for their helpful comments. As well as changes

inspired by the Recommender’s and Reviewers’ comments we have also slightly modified Figure

1 for aesthetics and we have included a url to the GitHub repository containing all code used

for simulations and figures (Line 604).

Figure 2: When reading first the manuscript, I didn’t understand the meaning of the blue and red circles

in this figure, and globally this figure is rather difficult to understand. This part only becomes clear when

reading the next section with Figure 3. I would suggest either removing this figure, or simplifying it by

summarizing more the main steps and goals of the approach taken in the manuscript (as an illustration

for the end of the introduction).

We agree that this figure is confusing when it comes before the explanation of our geometric

approach in the text. We have removed it from the introduction and inserted it at the beginning

of the discussion to provide an overview of our main results.

Box 1 is very useful but it is cited only rarely in the text. I think further reference to this box would be very

helpful to remind readers of critical steps and definitions of the approach (e.g. how change is measured at

the system level in the geometrical approach).

We have added references to Box 1 in some important places throughout the text, at lines 62,

122 and 195.

Legend of Figure 3: in (c), please explain what corresponds to x and y in the equation and what it means

(i.e. expected relationship between error and underestimation as derived from equation 4). From what I

understood, the dashed red lines and the black points correspond to (mean – sd) and (mean + sd) and not

to the values of the variances. This needs to be clarified. In addition, I would also explain that “underes-

timation” refers to the relative magnitude of underestimation as defined in equation (2).

In the revised figure legend we have clarified what x and y correspond to and we refer to equation
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4. Based on comments from Reviewer #1 we have also changed the statistics calculated in this

figure (and in the following figure). Instead of mean and standard deviation we now consider

median and quartiles. We have therefore included the following text in the figure legend:

Blue points are simulated results, red points are the actual median values and dashed lines show

the quantiles for vertical subsets of the simulated data. As dimensionality increases the width

of the distribution decreases and converges towards its median, which effectively increases the

probability of underestimation (b).

Legend of Figure 4, “The variance around the mean expectation was accurately predicted using the IPR

instead of species richness”: I would explain why more clearly in the text. Indeed, if the variance around

the mean expectation was well predicted by species richness, we would have the same variance in the two

studied cases of biomass distribution as they have the same number of species.

We have clarified this point in the main text by adding the following sentences (Lines 188-191):

If species richness accurately predicted the width of the distribution of underestimation and

therefore the probability of underestimation, the two simulated communities in Fig. 3 would

behave in the same way. However, the probability of underestimation is lower than expected

based on richness, particularly for the community with a more uneven biomass distribution.

Line 442 page 21: “we still see below”

Line 470 page 23: “probability of underestimation” instead of “probability of synergism”

Both corrected, thanks.

Examples page 25: it is not fully clear how these examples are related to what is presented in the main text,

this would need to be clarified. More globally, I think the appendices could be linked a little more clearly to

the main text.

We have added some explanations and references to the main text. At the beginning of the

section on aggregate properties we now write:
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We measure SF linear functions of species biomass of the form

Fα(B) =
S∑
i=1

Fα,iBi α = 1, ..., SF

And then, in example 1:

This example is the one treated in the main text, where the functions are statistically independent

of one another.

followed by:

At first order, the effective dimensionality Seff is the harmonic mean

Seff ≈
1

1
SF

+ 1
IPR

as presented in the main text.

Appendix page 29: This is not fully clear how the different aggregate functions are defined here. For in-

stance, do they depend on species biomass or on other species properties? This point would deserve to be

explained in the main text too.

We modified the text so that in now reads:

Linear aggregate functions of the form

F (B) =
S∑
i=1

FiBi

were defined via the coefficients Fi, i.e. their sensitivity to the change in the biomass of species

i. The sensitivity of an aggregate function to each species was randomly drawn from a normal

distribution of mean 0 and standard deviation 1. This corresponds to the case of statistically

independent functions (see example 1 in subsection S3.2)
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2 Response to Reviewer 1

In their manuscript, the authors argue that scaling up individual properties of complex systems to a system-

level properties will necessarily result in an underestimation. The authors show that this effect is dimension

dependent and they argue that in general the dimension should be computed as the inverse participation

ratio. It is a well-written manuscript and, especially, I find the geometric approach very intuitive. I think

this result deserves a recommendation in PCI.

We thank the reviewer for their thorough evaluation of our manuscript, and for their positive

comments. The reviewer’s main point about properties of mathematical expectations, and the

lack of explicit assumptions about probability distribution, is an important criticism. We address

it in detail in this new version. We hope that it will clarify our results and their domain of validity.

I have one major comment that the authors should first address. I do not think that the result applies

to any type of “error”; they should be an implicate assumption about the “error” that the authors have

to make explicit. I arrive to this conclusion as in general in probability theory we cannot switch between

taking the expectation of a random variable and an arbitrary function, i.e. in general f(E(x)) is not equal

to E(f(x)). For example, let us assume x ∼ Uniform distribution between -1 and +1 and f(x) = x2.

Clearly, E(x) = 0, but E(x2) > 0 = (E(x))2. So equations (4), (5), (7) and the mathematical derivation

in the appendix work only for specific assumptions on the distribution of the “error”. Stated as it is, they

are simply wrong. The authors have to find under which assumption their mathematical derivation works

and make it explicit in their manuscript. I guess the assumption is an independence assumptions between

the “error” between, i.e., they may have to be i.i.d. distributed. I also find the authors should provide more

mathematical reference justify their mathematical derivation.

The Reviewer is right, the mean of a non linear function of a random variable is typically not

equal to the function of the mean. The correct statistic to use is the median, and as long as

the function of the random variable is monotonous, the median of the function is equal to the

function of the median. Furthermore the median is more directly related to probabilities (it is

the value such that the probability of a random variable taking a value greater than the median

is 0.5). We thus use median and quartiles rather than mean and standard deviation in our
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simulations and figures (Figs. 2 and 3) and we have changed our presentation accordingly:

Lines 144-147: P (y > 0;x) is driven by the distribution of the random term cos θ. If this

distribution is narrow, realisations of y will fall close to the median ỹ. Because the latter is

positive and increases predictably with x, so will the probability of any realised y to be positive.

We also agree that our assumptions on the distributions of errors were not sufficiently explicit.

We now explain that we only consider unbiased and unskewed distributions, i.e. distributions

whose mean and median is zero. We then explain that our starting point is i.i.d. distributions of

error, but that the whole point of our IPR construction is to relax this assumption by allowing

errors to depend on the system’s component (e.g. the species, with the error scaling with its

abundance or biomass). We changed the text accordingly:

Lines 137-140: the term cos θ can take any values between −1 and +1. For the sake of simplicity,

in what follows we will suppose that its mean and median are zero. This is the case if the errors

associated with individual variables are drawn from independent symmetric distributions centred

on zero (unbiased and unskewed predictions at the component level).

Lines 154-159: We use the expression for the variance as a definition of effective dimension.

In doing so, we can free ourselves from the strict Euclidean representation, and generalize the

theory beyond i.i.d. normal error distributions. This will be useful when applying our theory

to ecological problems, where components are the biomass of species, are their contribution to

ecosystem change are not equivalent, thus errors not i.i.d.

3 Response to Reviewer 2

Authors develop a framework to quantify the underestimation of the magnitude of a system level change

when scaling up from species-level to ecosystem function (i.e. aggregated biomass). Authors argue that un-

derestimation – and uncertainty – grow with the system dimensionality, with dimensionality not meaning

more constituent species, but more diversity (i.e., diversity metrics like the inverse participation ratio or

Hill numbers) – The explanation from authors is based on the geometric observation that in high dimen-

sions there are more ways to be more different, than ways to be more similar. Authors provide a linear and

nonlinear approx. to proof this statement. They go deeper to explain that nonlinearility controls the sensi-
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tivity to underestimate upscaled predictions. Authors make a connection to stressed ecosystems: there will

be bias towards synergism when multiple stressors predictions are scaled up to higher levels of organization.

Authors apply underestimation at two levels in ecology – biomass to diversity. Could the message be that the

higher the dimensionality, for example from species to intraspecific or even to intraorganismal level for large

populations or communities, the higher the underestimation of system change at these high dimensionality

levels? What do authors think about generalizing (or discussing) their method to any number of levels? As

authors notice in Box 5, this topic is important in many disciplines. I is relevant to any field of science

that contains two or more levels each containing variance, and variance at intraorganismal and intraspe-

cific levels might contain additional dimensions, like the number of traits or trait arquitecture of individuals.

This is an interesting point, which certainly deserve clarification. When quantifying dimensional

effects there are only two levels of organisation that are important: the level where predictions

are made and the level where predictions are scaled up to. Knowledge of the effective dimen-

sionality and the non-linearity of the aggregate property used to measure change at the higher

level of organisation is all that is required to quantify the bias towards underestimation due to

dimensional effects. The dimensionality of each individual component in the level where predic-

tions are made (e.g. the number of individuals within a population) is not important. However

if predictions are scaled up across multiple levels of organisation the dimensionality of multiple

levels will be important. For example, if predictions are based at the level of individuals and

are first scaled up to the species level and then scaled up to the ecosystem level, there will be

two opportunties for dimensional effects to be introduced. Based on your comments we have

included the following paragraph in the discussion (Lines 284 to 291):

We have only considered two levels of organisation: the level where predictions are made and

the level where predictions are scaled up to. However, intermediate levels could, in principle,

be considered. For instance, given the increasing resolution of ecological data, predictions of

change may originally be based at the level of individual organisms and could first be scaled up

to species-level predictions and subsequently scaled up to ecosystem-level predictions. Here, if

non-linear aggregate properties are used, dimensional effects will bias species-level predictions

towards underestimation and will further increase this bias for ecosystem-level predictions.
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Overall, with the increasing resolution of data in ecology, usually containing individual level data, account-

ing for uncertainty to quantify the bias in the mean field approaches is key, especially in the context of

management of large ecosystems. Authors should emphasize more how the nature of ecological and other’s

disciplines data is challenging our understanding of uncertainty when accounting not only for 2 but for

many levels. This relates to Box 2 – All these disciplines contain individuals varying in phenotypes, strate-

gies and so on. Yet these heterogeneities within species are just ignored across disciplines. Are authors

assuming all diversity metrics are based in mean field phenotypic distributions containing low variance?

Why is this so?

In line with our response to your above comment we agree that the increasing resolution of

data means that predictions could be scaled up across multiple levels of organisation making it

important to consider the dimensionality of multiple levels of organisation. We have added the

following text to address this point (Lines 291-293):

With an ever-increasing resolution of data, scaling predictions across multiple levels of organ-

isation, and potentially introducing dimensional effects at multiple levels, may become more

common in the study of complex systems.

Authors refer to ”multidimensional system” to a system containing a species-rich ecosystem – do authors

implicitly assume that each species increases ecosystem dimension in one? Why? Does this imply that all

species living in a species-rich ecosystem make a perfect partition of one dimension per species? Please

clarify.

In section 3.1 Effective Dimensionality we address this point that each species does not neces-

sarily increase the effective dimensionality of the system by one. Indeed, if there is an uneven

biomass distribution and if a species’ contribution to change is statistically proportional to its

biomass, then taking the IPR (a specific diversity index) instead of species richness will give a

much better approximation for the effective dimensionality of the system as shown in Figure 3.

Authors emphasize their method predicts the generation towards non-additive synergism – They use a geo-

metric method to proof this statement yet the processes underlying diversity metrics can be different while
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the diversity metrics per se might remain similar – For example – rapid negative frequency dependent re-

source selection increases fitness of rare types, increasing the number of coexisting types within a species.

This mechanism also balance species abundances and increases diversity. The mechanism of positive fre-

quency dependent resource selection has the opposite impact, reducing intraspecific diversity while the mean

types and the diversity metrics can be the same than in the previous case. How do authors think two oppo-

site processes at intraspecific level change dimensionality (and uncertainty) at the diversity metrics level?

Do these two processes provide alternative bias towards synergism and antagonism? For example, can this

be tested exploring two different selection regimes using the simulated communities of Fig 5? Please clarify.

We thank the Reviewer for these comments. To clarify, we use diversity in two different contexts

in our paper. We first use a specific measure of diversity (the IPR) to quantify the effective

dimensionality of the system, and therefore the expected bias towards underestimation when

predictions are scaled up from individual components to the system level. Secondly, we use

diversity (Shannon’s diversity index) as a non-linear aggregate property, commonly used by

ecologists, to quantify system-level change.

Furthermore, in terms of multiple stressors we are not making predictions about what stressors,

perhaps with opposing mechanisms as you suggest, will do. Instead, we are saying that if we

have a model for how stressors combine (e.g. an additive model) at one level of organization

and we want to deduce a model for their combined effect at higher levels, the process of scaling

up will generate an underestimation of the combined effects, interpreted as a synergy between

stressors, even if no systematic synergy was observed at the lower level of organization. To

clarify this point we have added in the following sentence in our discussion of multiple stressors

(Lines 320 to 323):

In fact, we are not making predictions about how stressors will behave at higher levels of orga-

nization. What we claim instead is that, if we have a model for the combined effect of stressors

at one level of organization and use that model to deduce their combined effect at higher levels,

the process of scaling up the model will introduce a bias towards an observed synergy between

stressors, even if no systematic synergy was observed at the lower level

9


