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ABSTRACT 

Environmental metabarcoding is an increasingly popular tool for studying biodiversity in 1 

marine and terrestrial biomes. As metabarcoding with multiple markers, spanning several branches 2 

of the tree of life is becoming more accessible, bioinformatic pipelines need to accommodate both 3 

micro- and macro biologists. We built and tested a pipeline based on Illumina read correction with 4 

DADA2 allowing analysing metabarcode data from prokaryotic and eukaryotic life compartments. 5 

We implemented the option to cluster ASVs into Operational Taxonomic Units (OTUs) with 6 

swarm v2, a network-based clustering algorithm, and to further curate the ASVs/OTUs based on 7 

sequence similarity and co-occurrence rates using a recently developed algorithm, LULU. Finally, 8 

a flexible taxonomic assignment of the Amplicon Sequence Variants (ASVs) was added via the 9 

RDP Bayesian classifier or by BLAST. We validate this pipeline with ribosomal and mitochondrial 10 

markers using eukaryotic mock communities and 42 deep-sea sediment samples. The comparison 11 

of BLAST and the RDP Classifier underlined the potential of the latter to deliver very good 12 

assignments, but highlighted the need for a concerted effort to build comprehensive, yet specific 13 

databases adapted to the studied communities. The results underline the advantages of clustering 14 

and LULU-curation for producing metazoan biodiversity inventories, and show that LULU is an 15 

effective tool for filtering metazoan molecular clusters while avoiding arbitrary relative abundance 16 

filters. Overall conservative estimates of diversity can be obtained using DADA2 and LULU 17 

correction algorithms alone, or in combination with the clustering algorithm swarm v2 (i.e. to 18 

obtain ASVs or OTUs), depending on the objective of the study.  19 

 20 

 21 

Key words: Biodiversity, bioinformatics, environmental DNA, metabarcoding, mock 22 
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INTRODUCTION 25 

High-throughput sequencing (HTS) technologies are revolutionizing the way we assess 26 

biodiversity. By producing millions of DNA sequences per sample, HTS now allows broad 27 

taxonomic biodiversity surveys through metabarcoding of bulk DNA from complex communities 28 

or DNA directly extracted from soil, water, or air samples, i.e. environmental DNA (eDNA). First 29 

developed to unravel cryptic and uncultured prokaryotic diversity, metabarcoding methods have 30 

been extended to eukaryotes as powerful, non-invasive tools, allowing detection of a wide range 31 

of taxa in a rapid, cost-effective way using a variety of sample types (Creer et al., 2016; Stat et al., 32 

2017; Taberlet, Coissac, Hajibabaei, & Rieseberg, 2012; Valentini, Pompanon, & Taberlet, 2009). 33 

In the last decade, these tools have been used to describe past and present biodiversity in terrestrial 34 

(Ji et al., 2013; Pansu et al., 2015; Slon et al., 2017; Yoccoz et al., 2012; Yu et al., 2012), freshwater 35 

(Bista et al., 2015; Deiner, Fronhofer, Mächler, Walser, & Altermatt, 2016; Dejean et al., 2011; 36 

Evans et al., 2016; Valentini et al., 2016), and marine (Bik et al., 2012; Boussarie et al., 2018; De 37 

Vargas et al., 2015; Fonseca et al., 2010; Massana et al., 2015; Pawlowski et al., 2011; Salazar et 38 

al., 2016; Sinniger et al., 2016) environments. 39 

As every new technique brings on new challenges, a number of studies have put 40 

considerable effort into delineating critical aspects of metabarcoding protocols to ensure robust and 41 

reproducible results (see Fig.1 in Fonseca et al, 2018). Recent studies have addressed many issues 42 

regarding sampling methods (Dickie et al., 2018), contamination risks (Goldberg et al., 2016), 43 

DNA extraction protocols (Brannock & Halanych, 2015; Deiner et al., 2015; Zinger et al., 2016), 44 

amplification biases and PCR replication levels (Alberdi, Aizpurua, Gilbert, & Bohmann, 2017; 45 

Ficetola et al., 2015; Nichols et al., 2018). Similarly, computational pipelines, through which 46 

molecular data are transformed into ecological inventories of putative taxa, have also been in 47 

constant improvement. Indeed, PCR-generated errors and sequencing errors are major 48 
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bioinformatic challenges for metabarcoding pipelines, as they can strongly bias biodiversity 49 

estimates (Bokulich et al., 2013; Coissac, Riaz, & Puillandre, 2012). A variety of tools have been 50 

developed for quality-filtering amplicon data and removing erroneous reads to improve the 51 

reliability of Illumina-sequenced metabarcode inventories (Bokulich et al., 2013; Eren, Vineis, 52 

Morrison, & Sogin, 2013; Minoche, Dohm, & Himmelbauer, 2011). Studies that evaluated 53 

bioinformatic parameters have generally found these quality-filtering steps, as well as arbitrarily 54 

set clustering thresholds are the parameters that most strongly affect biodiversity inventories 55 

produced by metabarcoding (Brannock & Halanych, 2015; Brown, Chain, Crease, MacIsaac, & 56 

Cristescu, 2015; Clare, Chain, Littlefair, & Cristescu, 2016; Xiong & Zhan, 2018). 57 

Recent bioinformatic algorithms for the processing of metabarcode data have been 58 

developed to alleviate the influence of these two parameters. Amplicon-specific error correction 59 

methods, commonly used to correct sequences produced by pyrosequencing (Coissac et al., 2012), 60 

have now become available for Illumina-sequenced data. Published in 2016, DADA2 has quickly 61 

become a widely used tool for Illumina sequence correction, particularly in the microbial world, 62 

producing more accurate biodiversity inventories and resolving fine-scale variations by defining 63 

Amplicon Sequence Variants (ASVs) (Callahan et al., 2016; Nearing, Douglas, Comeau, & 64 

Langille, 2018). 65 

Low abundance molecular clusters remain an issue in metabarcoding biodiversity 66 

inventories, as it is challenging to discriminate valid but rare clusters from spurious ones. Singleton 67 

removal (clusters with less than 1-2 total reads) is largely advocated in the metabarcoding 68 

community (Clare et al., 2016) to limit the inflation of diversity due to the occurrence of spurious 69 

sequences. However, this method is arbitrary and potentially hinders the detection of rare species 70 

(Frøslev et al., 2017). LULU is a newly developed curation algorithm designed to filter out 71 

remaining spurious clusters originating from PCR and sequencing errors, or from intra-individual 72 
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variability (pseudogenes, heteroplasmy) based on objective criteria. Spurious clusters are detected 73 

based on their similarity and co-occurrence rate with more abundant clusters, allowing obtaining 74 

curated datasets while avoiding arbitrary abundance filters (Frøslev et al., 2017). The authors 75 

demonstrated their approach on metabarcoding of plants using ITS2 (nuclear ribosomal internal 76 

transcribed spacer region 2) and comparing several pipelines. Their results show that ASV 77 

definition with DADA2, subsequent clustering to address intraspecific variation, and final curation 78 

with LULU is the safest pathway for obtaining reliable and accurate metabarcoding data. The 79 

authors conclude that their validation on plants is relevant to other organism groups and other 80 

markers, while recommending future validation of LULU on mock communities. 81 

There were historically two reasons for clustering sequences into Operational Taxonomic 82 

Units (OTUs). The first was to limit the bias due to PCR and sequencing errors (and to some extent 83 

also intra-individual variability linked to the existence of pseudogenes) by clustering erroneous 84 

(and non-target) sequences with error free target sequences. The second was to delineate OTUs as 85 

clusters of sequences that would best fit a “species level”, i.e. the Operational Taxonomic Units 86 

defined using a classical phenetic proxy (Sokal & Crovello, 1970).  87 

The first issue being largely solved by the two correction algorithms DADA2 and LULU, 88 

the relevance of the second objective, i.e. the delineation of OTUs, is now being discussed. Indeed, 89 

after presenting their new algorithm on prokaryotic communities, the authors of DADA2 proposed 90 

that the reproducibility and comparability of ASVs across studies challenge the need for clustering 91 

sequences, as OTUs have the disadvantage of being study-specific and defined using arbitrary 92 

thresholds (Callahan, McMurdie, & Holmes, 2017).  93 

Nevertheless, it is widely recognized that homogeneous entities sharing a set of 94 

evolutionary and ecological properties, i.e. species (de Queiroz, 2005; Mayr, 1942), sometimes 95 

proposed to be designed as “ecotypes” for prokaryotes (Cohan, 2001; Gevers et al., 2005), represent 96 
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a fundamental category of biological organization that is the cornerstone of most ecological and 97 

evolutionary theories and empirical studies. Keeping ASV information for feeding databases and 98 

cross-comparing studies is not incompatible with their clustering into OTUs, and this choice 99 

depends on the purpose of the study (i.e. providing a census of the extent and distribution of genetic 100 

polymorphism for a given gene, or a census of biodiversity to be used and manipulated in ecological 101 

or evolutionary studies). In fact, obtaining a biodiversity inventory of metazoan communities 102 

without clustering is likely to deliver a dataset hard to manipulate and interpret in a community 103 

ecology framework. In such datasets each haplotype of the target gene in a given species will 104 

represent an ASV, yet very distinct levels of intraspecific polymorphism can exist in the same gene 105 

region due to both evolutionary and biological specificity (Bucklin, Steinke, & Blanco-Bercial, 106 

2011; Phillips, Gillis, & Hanner, 2019). For COI for example, this has been reported among species 107 

sampled in the same habitats (Plouviez et al., 2009). ASV-based inventories will thus be biased in 108 

favour of taxa with high levels of intraspecific diversity, even though the latter are not necessarily 109 

the most abundant ones (Bazin, Glémin, & Galtier, 2006). Such bias in biodiversity inventories 110 

based on ASVs is likely to be magnified in presence-absence metabarcode datasets, commonly 111 

used for metazoan communities (Ji et al., 2013). 112 

Clustering sequences while avoiding arbitrary clustering thresholds is possible with tools 113 

such as swarm v2, a single-linkage clustering algorithm (Mahe, Rognes, Quince, De Vargas, & 114 

Dunthorn, 2015). Based on network theory, this algorithm aggregates sequences iteratively and 115 

locally around seed sequences and determines coherent groups of sequences independent of 116 

amplicon input order, allowing highly scalable, fine-scale clustering. 117 

Here we evaluate the performance of DADA2 and LULU, using them alone and in 118 

combination with swarm v2, to test the possibilities offered by these new tools on metazoan 119 

communities revealed using both a mitochondrial COI marker (Leray et al., 2013) and the 18S-120 
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V1V2 (Sinniger et al., 2016) small subunit ribosomal RNA (SSU rRNA) barcode marker. For each 121 

of the markers, we evaluated the effect of read correction (using DADA2), clustering (using Swarm 122 

v2), and LULU curation to select the pipeline delivering the most accurate resolution in two deep-123 

sea mock communities. We then test the different tools on a deep-sea sediment dataset in order to 124 

select an optimal trade-off between inflating biodiversity estimates and loosing rare biodiversity. 125 

As a baseline for comparison and in the perspective of the joint study of metazoan and microbial 126 

taxa, we also analysed the 16S-V4V5 rRNA barcode on these natural samples (Parada, Needham, 127 

& Fuhrman, 2016). 128 

Our objectives were to (1) select the most appropriate tools allowing avoiding inflating 129 

biodiversity estimates while retaining rare biodiversity and (2) discuss the use of ASV and OTU-130 

centred datasets depending on taxonomic compartment of interest and on study objectives. 131 

 132 

1 MATERIALS AND METHODS 133 

1.1 Preparation of samples 134 

Mock communities 135 

Genomic-DNA mass-balanced metazoan mock communities were prepared using 136 

standardized 10 ng/µL DNA extracts of ten deep-sea specimens belonging to five taxonomic 137 

groups (Polychaeta, Crustacea, Anthozoa, Bivalvia, Gastropoda; Table S1). The mock 138 

communities differed in terms of ratios of total genomic DNA from each species, with increased 139 

dominance of three species and secondary species DNA input decreasing from 3% to 0.7%. 140 

 141 

Environmental DNA 142 

Sediment cores were collected from thirteen deep-sea sites ranging from the Arctic to the 143 

Mediterranean during various cruises (Table S2). Sampling was carried out with a multicorer 144 
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(MUC) or with a remotely operated vehicle (ROV). Three tube cores were taken at each sampling 145 

station (GPS coordinates in Table S2). The sediment cores were sliced into depth layers, which 146 

were transferred into zip-lock bags, homogenised, and frozen at −80°C on board before being 147 

shipped on dry ice to the laboratory. The first layer (0-1 cm) was used for the present analysis. 148 

DNA extractions were performed using approximately 10 g of sediment with the PowerMax Soil 149 

DNA Isolation Kit (Qiagen, Hilden, Germany). To increase the DNA yield, the elution buffer was 150 

left on the spin filter membrane for 10 min at room temperature before centrifugation. The ~5 mL 151 

extract was then split into three parts, one of which was kept in screw-cap tubes for archiving 152 

purposes and stored at -80°C. Negative extraction controls were included in each extraction run. 153 

 154 

1.2 Amplicon library construction and high-throughput sequencing 155 

Two primer pairs were used to amplify the mitochondrial Cytochrome c Oxidase subunit I 156 

(COI) and the 18S-V1V2 small-subunit ribosomal RNA (SSU rRNA) barcode genes specifically 157 

targeting metazoans, and one pair of primer was used to amplify the prokaryote 16S-V4V5 region 158 

(Table S 3). PCR amplifications, library preparation, and sequencing were carried out at Génoscope 159 

(Evry, France) as part of the eDNAbyss project.  160 

 161 

Eukaryotic 18S-V1V2 rRNA gene amplicon generation 162 

Amplifications were performed with the Phusion High Fidelity PCR Master Mix with GC 163 

buffer (ThermoFisher Scientific, Waltham, MA, USA) and the SSUF04 and SSUR22mod primers 164 

(Sinniger et al. 2016, Table S 3). The PCR reactions (25 μL final volume) contained 2.5 ng or less 165 

of DNA template with 0.4 μM concentration of each primer, 3% of DMSO, and 1X Phusion Master 166 

Mix. PCR amplifications (98 °C for 30 s; 25 cycles of 10 s at 98 °C, 30 s at 45 °C, 30 s at 72 °C; 167 
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and 72 °C for 10 min) of all samples were carried out in triplicate in order to smooth the intra-168 

sample variance while obtaining sufficient amounts of amplicons for Illumina sequencing.  169 

 170 

Eukaryotic COI gene amplicon generation 171 

Metazoan COI barcodes were generated using the mlCOIintF and jgHCO2198 primers 172 

(Leray et al. 2013, Table S 3). Triplicate PCR reactions (20 μl final volume) contained 2.5 ng or 173 

less of total DNA template with 0.5 μM final concentration of each primer, 3% of DMSO, 0.175 174 

mM final concentration of dNTPs, and 1X Advantage 2 Polymerase Mix (Takara Bio, Kusatsu, 175 

Japan). Cycling conditions included a 10 min denaturation step followed by 16 cycles of 95 °C for 176 

10 s, 30s at 62°C (−1°C per cycle), 68 °C for 60 s, followed by 15 cycles of 95 °C for 10 s, 30s at 177 

46°C, 68 °C for 60 s and a final extension of 68 °C for 7 min.  178 

 179 

Prokaryotic 16S rRNA gene amplicon generation 180 

Prokaryotic barcodes were generated using 515F-Y and 926R 16S-V4V5 primers (Parada 181 

et al., 2016). Triplicate PCR mixtures were prepared as described above for 18S-V1V2, but cycling 182 

conditions included a 30 s denaturation step followed by 25 cycles of 98 °C for 10 s, 53 °C for 30 s, 183 

72 °C for 30 s, and a final extension of 72 °C for 10 min.  184 

In all cases, amplicon triplicates were then pooled and PCR products purified using 1X 185 

AMPure XP beads (Beckman Coulter, Brea, CA, USA) clean up. Aliquots of purified amplicons 186 

were run on an Agilent Bioanalyzer using the DNA High Sensitivity LabChip kit (Agilent 187 

Technologies, Santa Clara, CA, USA) to check their lengths and quantified with a Qubit 188 

fluorimeter (Invitrogen, Carlsbad, CA, USA). 189 

 190 
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Amplicon library preparation 191 

One hundred ng of amplicons were directly end-repaired, A-tailed and ligated to Illumina 192 

adapters on a Biomek FX Laboratory Automation Workstation (Beckman Coulter, Brea, CA, 193 

USA). Library amplification was performed using a Kapa Hifi HotStart NGS library Amplification 194 

kit (Kapa Biosystems, Wilmington, MA, USA) with the same cycling conditions applied for all 195 

metagenomic libraries and purified using 1X AMPure XP beads. 196 

 197 

Sequencing library quality control 198 

Libraries were quantified by Quant-iT dsDNA HS assay kits using a Fluoroskan Ascent 199 

microplate fluorometer (Thermo Fisher Scientific, Waltham, MA, USA) and then by qPCR with 200 

the KAPA Library Quantification Kit for Illumina Libraries (Kapa Biosystems, Wilmington, MA, 201 

USA) on an MxPro instrument (Agilent Technologies, Santa Clara, CA, USA). Library profiles 202 

were assessed using a high-throughput microfluidic capillary electrophoresis system (LabChip GX, 203 

Perkin Elmer, Waltham, MA, USA). 204 

Sequencing procedures 205 

Library concentrations were normalized to 10 nM by addition of 10 mM Tris-Cl (pH 8.5) 206 

and applied to cluster generation according to the Illumina Cbot User Guide (Part # 15006165). 207 

Amplicon libraries are characterized by low diversity sequences at the beginning of the reads due 208 

to the presence of the primer sequence. Low-diversity libraries can interfere in correct cluster 209 

identification, resulting in a drastic loss of data output. Therefore, loading concentrations of 210 

libraries were decreased (8–9 pM instead of 12–14 pM for standard libraries) and PhiX DNA spike-211 

in was increased (20% instead of 1%) in order to minimize the impacts on the run quality. 212 

Libraries were sequenced on HiSeq2500 (System User Guide Part # 15035786) instruments 213 

(Illumina, San Diego, CA, USA) in a 250 bp paired-end mode.  214 
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1.3 Bioinformatic analyses 215 

All bioinformatic analyses were performed using a Unix shell script on a home-based 216 

cluster (DATARMOR, Ifremer), available on Gitlab (https://gitlab.ifremer.fr/abyss-project/). The 217 

mock communities were analysed alongside the natural samples, and used to validate the 218 

metabarcoding pipeline in terms of detection of correct species and presence of false-positives. The 219 

details of the pipeline, along with specific parameters used for both metabarcoding markers, are 220 

listed in Table S 4. 221 

 222 

Reads preprocessing 223 

Our multiplexing strategy relies on ligation of adapters to amplicon pools, meaning that 224 

contrary to libraries produced by double PCR, the reads in each paired sequencing run can be 225 

forward or reverse. DADA2 correction is based on error distribution differing between R1 and R2 226 

reads. We thus developed a custom script (abyss-preprocessing in abyss-pipeline) allowing 227 

separating forward and reverse reads in each paired run and reformatting the outputs to be 228 

compatible with DADA2. Briefly, the script uses cutadapt v1.18 to separate forward and reverse 229 

reads in each paired sequence file, producing two pairs of sequence files per sample named 230 

R1F/R2R and R2F/R1R, while removing primers based on a maximum error rate (-e 0.17 for 18S-231 

V1 and 0.27 for COI , -O length of primer -1). ). Each identified forward and reverse read is then 232 

renamed which the correct extension (/1 and /2 respectively), which is a requirement for DADA2 233 

to recognize the pairs of reads. Each pair of renamed sequence files is then re-paired with BBMAP 234 

Repair v38.22 in order to remove singleton reads (non-paired reads). Optionally, sequence file 235 

names can also be renamed if necessary using a CSV correspondence file. 236 

 237 

 238 
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Read correction, amplicon cluster generation and taxonomic assignment 239 

Pairs of Illumina reads were corrected with DADA2 v.1.10 (Callahan et al., 2016) following 240 

the online tutorial for paired-end data (https://benjjneb.github.io/dada2/tutorial.html). Reads were 241 

filtered and trimmed with the filterAndTrim function and all reads containing ambiguous bases 242 

removed (truncLen at 220 for 18S and 16S, 200 for COI, maxEE at 2, truncQ at 11, maxN at 0).  243 

The error model was calculated for forward and reverse reads (R1F/R2R pairs and then 244 

R2F/R1R pairs) with learnErrors based on 100 million randomly chosen bases, and reads were 245 

dereplicated using derepFastq. After read correction with the dada function, forward and reverse 246 

reads were merged with a minimum overlap of 12 nucleotides, allowing no mismatches. The 247 

amplicons were then filtered by size. The size range was set to 330-390 bp for the 18S SSU rRNA 248 

marker gene, 300-326 bp for the COI marker gene, and 350-390 bp for the 16S rRNA marker gene.  249 

Chimeras were removed with removeBimeraDenovo and ASVs were taxonomically 250 

assigned via the RDP naïve Bayesian classifier method, the default assignment method 251 

implemented in DADA2. A second taxonomic assignment method was optionally implemented in 252 

the pipeline, allowing assigning ASVs using BLAST+ (v2.6.0) based on minimum similarity and 253 

minimum coverage (-perc_identity 70 and –qcov_hsp 80). The Silva132 reference database was 254 

used for the 16S and 18S SSU rRNA marker genes (Quast et al., 2012), and MIDORI-UNIQUE 255 

(Machida, Leray, Ho, & Knowlton, 2017) was used for COI. The databases were downloaded from 256 

the DADA2 website (https://benjjneb.github.io/dada2/training.html) and from the FROGS website 257 

(http://genoweb.toulouse.inra.fr/frogs_databanks/assignation/). We individually barcoded the 258 

species present in the mock communities and added their barcode sequences to all the databases. 259 

Finally, to evaluate the effect on clustered data when OTUs are to be produced, ASV tables 260 

produced by DADA2 were clustered with swarm v2 (Mahe et al., 2015) at d=4 for 18S, d=6 for 261 
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COI, and d=1 for 16S in FROGS (http://frogs.toulouse.inra.fr/) (Escudié et al., 2018). Resulting 262 

OTUs were taxonomically assigned via BLAST+ using the databases stated above. 263 

Molecular clusters were refined in R v.3.5.1 (R Core Team, 2018). A blank correction was 264 

made using the decontam package v.1.2.1 (Davis, Proctor, Holmes, Relman, & Callahan, 2018), 265 

removing all clusters that were more abundant in negative control samples than in other samples. 266 

ASV/OTU tables were refined taxonomically based on their RDP or BLAST taxonomy. For both 267 

assignment methods, unassigned clusters were removed. Non-target 18S and COI clusters 268 

(bacterial, non-metazoan) as well as all clusters with a terrestrial assignment (taxonomic groups 269 

known to be terrestrial-only, such as Insecta, Arachnida, Diplopoda, Amphibia, terrestrial 270 

mammals, Stylommatophora, Aves, Onychophora, Succineidae, Cyclophoridae, Diplommatinidae, 271 

Megalomastomatidae, Pupinidae, Veronicellidae) were removed. Samples were checked to ensure 272 

that a minimum of 10,000 metazoan reads were left after refining. Finally, an abundance 273 

renormalization was performed to remove spurious positive results due to random tag switching 274 

(Wangensteen & Turon, 2016). 275 

To test LULU curation (Frøslev et al., 2017), refined 18S and COI ASVs/OTUs were 276 

curated with LULU v.0.1 following the online tutorial (https://github.com/tobiasgf/lulu). The 277 

LULU algorithm detects erroneous clusters by comparing their sequence similarities and co-278 

occurrence rate with more abundant (“parent”) clusters. LULU was tested with a minimum relative 279 

co-occurrence of 0.90 and a minimum similarity (minimum match) threshold of 84% and 90%.  280 

The vast majority of prokaryotes usually show low levels (< 1% divergence) of intra 281 

genomic variability for the 16S SSU rRNA gene (Acinas, Marcelino, Klepac-Ceraj, & Polz, 2004; 282 

Pei et al., 2010). Although we acknowledge that for a limited amount of cases, curation with LULU 283 

may still be useful to obtain a more rigorous census of biodiversity, this was not tested on the 284 

prokaryote communities used in this study. Indeed, parallelization not being currently available for 285 
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LULU curation, the richness of those communities implied an unrealistic amount of calculation 286 

time, even on a powerful cluster (several weeks). 287 

 288 

1.4 Statistical analyses 289 

Sequence tables were analysed using R with the packages phyloseq v1.22.3 (McMurdie & 290 

Holmes, 2013) following guidelines on online tutorials 291 

(http://joey711.github.io/phyloseq/tutorials-index.html), and vegan v2.5.2 (Oksanen et al., 2018). 292 

Each biodiversity inventory and its LULU curated version were merged into a single phyloseq 293 

object. The datasets were normalized by rarefaction to their common minimum sequencing depth, 294 

before analysis of the mock communities and the natural samples. 295 

To evaluate the functionality of the pipeline with the mock communities, taxonomically 296 

assigned metazoan clusters were considered as derived from one of the ten species used for the 297 

mock communities when the assignment delivered the corresponding species, genus, family, or 298 

class. Clusters not fitting the expected taxa were labelled as ‘Others’. These non-target clusters 299 

may be spurious or reflect contamination by external DNA or associated microfauna, such as 300 

commensals or parasites, which might have been present in the extracted tissue. 301 

Alpha diversity detected using each pipeline in the natural samples was evaluated with the 302 

number of observed target-taxa in the rarefied datasets via analyses of deviance (ANODEV) on 303 

generalized linear models based on quasipoisson distribution models. Homogeneity of multivariate 304 

dispersions were verified with the betapart package v.1.5.1 (Baselga & Orme, 2012). The effect of 305 

LULU curation, site and sediment core (nested within site) on community composition was tested 306 

by means of PERMANOVA on the rarefied incidence datasets. PERMANOVAs were calculated 307 

using the function adonis (vegan), with Jaccard dissimilarities, and 9999 permutations, permuting 308 

within sites for evaluating the Pipeline and Core effects. Finally, taxonomic compositions in terms 309 
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of cluster abundance were compared between pipelines and with results of a morphological 310 

inventory obtained from a first-level sorting in two sites. 311 

 312 

2 RESULTS 313 

2.1 High throughput DNA sequencing 314 

A number of 45,828,979 18S reads, 34,639,914 COI reads and 16,406,877 16S reads were 315 

obtained from six Illumina HiSeq runs of pooled amplicon libraries built from 42 sediment 316 

samples, 2 mock communities (for 18S and COI), 6 extraction blanks, and 4-10 PCR negative 317 

controls (Table 1). Two sediment samples failed amplification for the COI marker gene 318 

(PCT_FA_CT2_0_1 and CHR_CT1_0_1). For metazoans, less reads were retained after 319 

bioinformatic processing in negative controls (36% kept for 18S, 47% for COI) than in true or 320 

mock samples (~60% kept for 18S, 70-80% for COI), while the opposite was observed for 16S 321 

(74% of reads retained in control samples against 53% in true samples). In total, 25,773,684 18S 322 

reads, 24,244,902 COI reads, and 9,446,242 16S reads remained after processing with DADA2. 323 

Negative control samples (extraction and PCR blanks) contained 2,186,230 (~8%) 18S reads, 324 

1,015,700 (~4%) COI reads, and 2,618,729 (28%) 16S reads. These reads were mostly originating 325 

from the extraction controls (59% for 18S, 65% for COI, and 72% for 16S). The corresponding 326 

clusters were removed from real samples if the number of reads in true samples was lower than in 327 

the negative controls.  328 

After data refining and abundance renormalization, rarefaction curves showed a plateau 329 

was achieved for all samples in both clustered and non-clustered datasets, suggesting an overall 330 

sequencing depth adequate to capture the diversity present (Fig. S1).  331 

 332 

 333 
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Table 1. Number of reads, ASVs, and OTUs obtained in samples after each pipeline step. Data refining was performed in R, based on 
BLAST assignments. Forward slashes separate ASV/OTU datasets (Dada2 without swarm clustering / Dada2 with swarm clustering). 

 

Sample type Number of 
samples

Raw reads Quality-filtered 
reads

Merged reads
Reads before 

chimera 
removal

Non chimeric 
reads

% reads 
retained

Number of 
ASVs/OTUs 

before 
refining

Number of 
samples 

after 
refining

Number of target 
reads after 

refining

Number of 
target reads 

after 
renormalisation

Final number 
of target 

ASVs/OTUs

Number of 
target 

OTUs after 
LULU 
84%

Number of 
target 

OTUs after 
LULU 90%

LOCUS
18S-V1
Control Sample 14 6 141 567              2 508 908             2 441 821        2 200 132       2 186 230      35,6 0
Mock Sample 2 2 096 631              1 607 219             1 436 773        1 430 823       1 289 608      61,5 2
True Sample 42 37 590 781            26 828 194           24 826 430       22 636 689     22 297 846    59,3 42
COI
Control Sample 16 2 146 476              1 053 997             1 024 547        1 015 821       1 015 700      47,3 0
Mock Sample 2 1 482 785              1 261 045             1 252 908        1 251 994       1 224 795      82,6 2
True Sample 40 31 010 653            26 011 238           25 287 002       22 197 457     22 004 407    71,0 40

Control Sample 10 3,531,226 2,889,163 2,634,536 2,619,479 2,618,729 74.2 0
True Sample 42 12,875,651 9,307,729 7,122,154 7,114,195 6,827,513 53 42

16S - V4V5

56,577 / 41,746
6,809,966 / 
6,801,953

6,719,153 / 
6,680,238

55,129 / 40,459 - -

 10,234,660 / 
10,686,911 

 10,160,603 / 
10,541,499 

11,304 / 5,877 2,132 / 1,535 3, 639 / 2,88957,661 / 31,509

17,265 / 
7,251 

78,785 / 52,216
 7,601,973 / 
5,179,905 

 7,552,406 / 
5,129,293 

21,663 / 8,249
11,987 / 

4,849
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The 18S ASV dataset comprised 10,160,603 marine metazoan reads, with an average of 334 

230,923 per sample (range of 42,119-721,972). When clustered with swarm v2, the final 18S 335 

dataset comprised 10,541,499 target reads, with an average of 239,579 per sample (range 45,259-336 

721,753). The final COI ASV dataset comprised 7,552,406 marine metazoan reads, with an average 337 

of 179,819 per sample, (range of 54,585-438,324). When clustered with swarm v2, the final COI 338 

dataset comprised 5,129,293 target reads, with an average of 122,126 per sample (range of 31,228-339 

349,805). The 16S ASV dataset comprised 6,719,153 prokaryotic reads, with an average of 340 

159,979 per sample (range of 71,834 – 251,054). When clustered with swarm v2, the final 16S 341 

dataset comprised 6,680,238 prokaryotic reads, with an average of 159,253 per sample (range 342 

71,601 - 250,032).  343 

From the total 57,661 ASVs detected for 18S, 47,084 (82%) were assigned by BLAST to 344 

phylum level or lower. The assigned ASVs accounted for 97% of total 18S reads. BLAST detected 345 

11,304 marine metazoan ASVs (Table 1). Samples contained 389 target ASVs on average, with a 346 

range of 88-881 per sample. LULU curation of 18S ASVs at 84% minimum match resulted in 2,132 347 

clusters (134 per sample on average, range of 11-273), while 3,639 clusters remained after LULU 348 

curation at 90% minimum match (186 per sample on average, range of 14-402) (Table 1). From the 349 

total 31,509 18S OTUs obtained after clustering with swarm v2 (Mahe et al., 2015) at d=4 (~1% 350 

divergence), 22,427 (71%) were assigned to phylum level or lower The assigned OTUs accounted 351 

for 93% of 18S reads. This resulted in 5,877 marine metazoan OTUs after data refining (286 352 

metazoan clusters per sample on average, range of 29-698). The number of metazoan OTUs was 353 

reduced to 1,535 and 2,889 after LULU curation at 84% and 90% minimum match respectively 354 

(136 and 196 metazoan clusters per sample on average, range of 10-268 and 12-404 respectively). 355 

The number of raw ASVs yielded by COI was higher: 78,785 from which 46,301 (59%) 356 

were assigned to phylum level or lower. The assigned ASVs accounted for 65% of total COI reads. 357 
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After data refining, BLAST identified 21,663 marine metazoan ASVs in the COI dataset (Table 1). 358 

Samples contained 914 ASVs on average, with a range of 56-1,955 per sample. LULU curation of 359 

COI ASVs at 84% minimum match resulted in 11,987 clusters (599 per sample on average, range 360 

of 22-1,210), while 17,265 clusters remained after LULU curation at 90% minimum match (787 361 

per sample on average, range of 23-1,697). From the 52,216 COI OTUs obtained after clustering 362 

ASVs with swarm v2 at d=6 (~2% divergence), 21,924 (42%) were assigned to phylum level or 363 

lower. The assigned OTUs represented 52% of COI reads. After data refining, 8,249 marine 364 

metazoan COI OTUs remained in the dataset (470 per sample on average, range of 28-1,069). This 365 

number was reduced to 4,849 and 7,251 after LULU curation at 84% and 90% minimum match 366 

respectively (333 and 434 clusters per sample on average, range of 17-671 and 17-990 367 

respectively). 368 

From the total 56,577 ASVs detected for 16S, 55,804 (98.6%) were assigned by BLAST at 369 

phylum level or lower. The assigned ASVs accounted for 99.9% of total 16S reads, resulting in 370 

55,129 final ASVs (Table 1). From the total 41,746 16S OTUs obtained after clustering with swarm 371 

v2 (Mahe et al., 2015) at d=1, 40,768 (97.7%) were assigned to phylum level or lower, resulting 372 

in 40,459 final OTUs. 373 

Refining the ASV datasets based on RDP taxonomy resulted in decreased metazoan 374 

detection levels, but this was not the case for prokaryotes (Table S 5). For 18S, only 45% of ASVs 375 

could be assigned to phylum-level or lower, resulting in 8,365 marine metazoan ASVs. For COI, 376 

although RDP assigned 76% of ASVS, only 2,526 target ASVs could be retrieved. We therefore 377 

reduced our COI database to only marine sequences. This resulted in 11% of assigned ASVs, but 378 

increased the number of target clusters to 8,466 (Table S 6). 379 

 380 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/717355doi: bioRxiv preprint first posted online Aug. 1, 2019; 

http://dx.doi.org/10.1101/717355
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

2.2 Performance on mock samples 381 

Assigning ASVs with BLAST allowed recovering 7 out of 10 mock species in the 18S 382 

dataset and all species in the COI dataset (Table 2), even with minimum relative DNA abundance 383 

levels as low as 0.7% (Mock 5).  384 

When ASVs were clustered with swarm v2, this generally led to a slight loss of taxonomic 385 

resolution (Chorocaris sp. was not detected in Mock 3 for 18S and the two bivalves P. kilmeri and 386 

C. regab were taxonomically misidentified for COI). Taxonomically unresolved species were 387 

correctly assigned up to their common family or class level. Dominant species generally produced 388 

more reads in both the clustered and non-clustered datasets (Table S 7). 389 

Clustering sequences with swarm v2 reduced the number of clusters produced per species, 390 

but some species still produced multiple (up to 10) OTUs (A. arbuscula, Munidopsis sp., and E. 391 

norvegica for 18S; A. muricola, D. dianthus, Chorocaris sp., and Paralepetopsis sp. for COI). 392 

Curating with LULU allowed reducing the number of clusters produced per species to nearly one, 393 

with and without clustering, and this for both loci. Moreover, LULU curation decreased the number 394 

of spurious clusters (“Others”), but this effect was more marked for 18S and at 84% minimum 395 

match (Table 2). However, curating with LULU the 18S data (ASVs or OTUs) led to the loss of 396 

one shrimp species (Chorocaris sp) when the minimum match parameter was at 90% and an 397 

additional species (the limpet Paralepetopsis sp.) when this parameter was at 84%. LULU 398 

consistently merged the shrimp species Chorocaris sp with another shrimp species as the latter 399 

were always co-occurring in our mock samples. 400 

  401 
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 402 

  403 

18S DADA2
DADA2
+LULU 

84%

DADA2+
LULU 
90%

DADA2
+swarm

DADA2+swarm
+LULU 84%

DADA2+swarm
+LULU 90%

Mock 3
Alcyonacea;A.arbuscula 64 1 1 Alcyonacea;A.arbuscula 9 1 1
Caryophylliidae;D.dianthus 2 1 1 Caryophylliidae;D.dianthus 1 1 1
Alvinocaris muricola 2 1 1 Alvinocaris muricola 1 1 1
Chorocaris  sp. 1 0 0 Chorocaris  sp. 0 0 0
Munidopsis  sp. 6 1 1 Munidopsis  sp. 3 1 1
Gastropoda;Paralepetopsis  sp. 1 0 1 Gastropoda;Paralepetopsis  sp. 1 0 1
Vesicomyidae;P. kilmeri/C. regab/V. gigas 8 1 1 Bivalvia;P. kilmeri/C. regab/V. gigas 3 1 1
Polychaeta;E.norvegica 8 2 3 Polychaeta;E.norvegica 4 2 2
Others 3 2 3 Others 4 2 2
Mock 5
Alcyonacea;A.arbuscula 54 1 1 Alcyonacea;A.arbuscula 9 1 1
Caryophylliidae;D.dianthus 1 1 1 Caryophylliidae;D.dianthus 1 1 1
Alvinocaris muricola 1 1 1 Alvinocaris muricola 1 1 1
Chorocaris  sp. 1 0 0 Chorocaris  sp. 1 0 0
Munidopsis  sp. 4 1 1 Munidopsis  sp. 3 1 1
Gastropoda;Paralepetopsis  sp. 1 0 1 Gastropoda;Paralepetopsis  sp. 1 0 1
Vesicomyidae;P. kilmeri/C. regab/V. gigas 5 1 1 Bivalvia;P. kilmeri/C. regab/V. gigas 4 1 2
Polychaeta;E.norvegica 11 2 3 Polychaeta;E.norvegica 4 2 2
Others 4 2 3 Others 4 2 2

COI DADA2
DADA2
+LULU 

84%

DADA2+
LULU 
90%

DADA2
+swarm

DADA2+swarm
+LULU 84%

DADA2+swarm
+LULU 90%

Mock 3
Acanella arbuscula 1 1 1 Acanella arbuscula 1 1 1
Hexacorallia;D.dianthus 3 3 3 Hexacorallia;D.dianthus 4 3 3
Alvinocaris ;A. muricola 26 2 2 Alvinocaris;A. muricola 10 1 1
Chorocaris  sp. 2 1 1 Chorocaris  sp. 3 1 1
Galatheidae;Munidopsis  sp. 2 2 1 Munidopsis  sp. 1 1 2
Gastropoda;Paralepetopsis  sp. 8 3 3 Gastropoda;Paralepetopsi s sp. 3 2 2
Phreagena kilmeri 2 1 1 Bivalvia;P. kilmeri
Bivalvia;C. regab 2 1 1 Bivalvia;C. regab
Vesicomya gigas 1 1 1 Vesicomya gigas 1 1 1
Polychaeta;E.norvegica 3 3 1 Eunice norvegica 1 1 1
Others 7 5 6 Others 3 4 5
Mock 5
Acanella arbuscula 1 1 1 Acanella arbuscula 1 1 1
Hexacorallia;D.dianthus 3 3 3 Hexacorallia;D.dianthus 3 3 3
Alvinocaris ;A. muricola 26 2 2 Alvinocaris;A. muricola 9 1 1
Chorocaris  sp. 1 1 1 Chorocaris  sp. 2 1 1
Galatheidae;Munidopsis  sp. 2 1 1 Munidopsis  sp. 1 1 1
Gastropoda;Paralepetopsis  sp. 7 2 2 Gastropoda;Paralepetopsis  sp. 3 2 3
Phreagena kilmeri 1 1 1 Bivalvia;P. kilmeri
Bivalvia;C. regab 2 1 1 Bivalvia;C. regab
Vesicomya gigas 1 1 1 Vesicomya gigas 1 1 1
Polychaeta;E.norvegica 2 2 3 Eunice norvegica 1 1 1
Others 5 6 5 Others 3 2 2

3 2 2

2 2 2

Table 2. Number of ASVs/OTUs detected per species in the mock communities using different 
bioinformatic pipelines. White cells indicate an exact match with the number of OTUs expected, 
grey cells indicate a number of OTUs differing by ±3 from the number expected, and dark grey 
cells indicate a number of OTUs >3 from the one expected. 
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Assigning ASVs with the RDP Bayesian Classifier allowed recovering 4 out of 10 mock 404 

species in the 18S dataset (Fig S 2) and no species in the COI dataset using the full MIDORI 405 

database. The six incorrectly resolved species in the 18S dataset could only be resolved 406 

taxonomically up to their common class level (venerid bivalves and malacostracan crustaceans). 407 

For the COI dataset, using the full MIDORI database resulted in RDP assignments that never 408 

matched the expected taxon and were mostly assigned to arthropods (data not shown). When the 409 

database was reduced to marine-only taxa, all 10 species were detected (Fig S 2), although the 410 

dataset contained a considerable amount of spurious assignments (29 clusters assigned up to 411 

Arthropoda and Chordata). The latter were however always associated to a phylum bootstrap level 412 

< 98. As the taxonomic resolution using RDP was poorer in the mock communities using 18S, the 413 

remaining work was performed using BLAST assignments. 414 

 415 

2.3 Alpha-diversity patterns between pipelines 416 

Eukaryotes 417 

The number of metazoan clusters detected in the deep-sea sediment samples varied 418 

significantly between bioinformatic pipelines chosen (ANODEV: 18S, F(5,175)=599.91, p<0.001 419 

and COI, F(5,195)=1,320.32, p<0.001, 16S, F(51,41)=2008.76, p<0.001, see Table S 8). 420 

Expectedly, clustering and LULU curation significantly reduced the number of detected clusters 421 

per sample for all loci. The reduction due to clustering was much more pronounced for metazoans, 422 

particularly for COI, than for 16S data (Fig. 1). DADA2 detected on average 389 (SE=28) and 863 423 

(SE=61) metazoan 18S and COI ASVs per sample respectively, while clustering ASVs (at d=4 for 424 

18S, d=6 for COI, and d=1 for 16S) reduced the number of metazoan OTUs detected to 289 425 

(SE=21) for 18S and 467 (SE=34) for COI. For prokaryotes, the number of ASVs was on average 426 

3,567 (SE=480) per sample, clustering decreased this mean to 3,138 (SE=413) OTUs per sample. 427 
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 428 

 429 

 430 

LULU significantly decreased the number of metazoan clusters detected in both the ASV 431 

and OTU datasets. The effect was stronger at a lower minimum match parameter. It was also more 432 

pronounced in the ASV datasets and for the 18S locus (Fig. 1). At 90% minimum match, LULU 433 

decreased by 51% the number of 18S and by 14% the number of COI ASVs, while this decrease 434 

was only of 31% for 18S OTUs and 7% for COI OTUs. When the minimum match parameter was 435 

at 84%, LULU decreased the number of detected metazoan clusters by 65% for 18S ASVs and 436 

33% for COI ASVs, while in the clustered dataset this decrease was of 51% and 28% for 18S and 437 

COI OTUs respectively. LULU curation of ASVs or OTUs produced comparable number of 438 

clusters in the 18S dataset. At 84% minimum match, LULU curation produced on average 137 ± 7 439 

and 140 ± 8 clusters per sample after application on ASVs and OTUs respectively. At 90%, these 440 

Figure 1. Number of clusters detected in sediment of 14 deep-sea sites with the Dada2 
metabarcoding pipeline with or without LULU curation at 84% and 90% minimum match 
and swarm v2 clustering, using the 18S (left) and COI (centre) and 16S (right) marker genes. 
Cluster abundance was obtained after rarefaction to minimal sequencing depth. Boxplots 
represent medians with first and third quartiles. Barplots show means and standard errors. 
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numbers were at 189 ± 11 and 200 ± 12 (Fig. 1). This was not the case for COI, where LULU 441 

curation of ASVs resulted in significantly more clusters (574 ± 38 at 84% and 742 ± 53 at 90%) 442 

than LULU curation of OTUs (334 ± 21 and 433 ± 31). 443 

The number of clusters detected also varied significantly among sites (ANODEV: 18S, 444 

F(11,175)=283.57, p<0.001 ; COI, F(13,195)=761.19, p<0.001; 16S, F(13,41)=507.37, p<0.01), 445 

and cores nested within sites (ANODEV: 18S, F(24,175)=32.21, p<0.001; COI, F(26,195)=72.91, 446 

p<0.001; 16S, F(28,41)=241.73, p<0.01). However, while the mean number of clusters detected 447 

per sample spanned a wide range in all loci (100-800 for 18S, 150-1,500 for COI datasets, and 448 

2,000-5,000 for 16S), the pipeline effect was consistent across sites (Fig. S 3). 449 

 450 

2.4 Taxonomic assignments and patterns of beta-diversity between pipelines 451 

Sequence identity varied strongly depending on phyla and marker gene (Fig. 2). For 18S, 452 

most clusters had hit identities ≥ 90%. Poorly assigned clusters (hit identity < 90%) represented 453 

less than 20% of the dataset and were mostly assigned to Nematoda, Cnidaria, Tardigrada, Porifera, 454 

and Xenacoelomorpha. For COI, nearly all clusters had similarities to sequences in databases lower 455 

than 90%. Overall, arthropods and echinoderms were detected at similar levels by both markers. 456 

The 18S barcode marker performed better in the detection of nematodes, annelids, platyhelminths, 457 

and xenacoelomorphs while COI mostly detected cnidarians, molluscs, and poriferans (Fig. 2), 458 

highlighting the complementarity of these two loci. Sequence identity was much higher for 459 

prokaryotes, with most clusters assigned above 90%.  460 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/717355doi: bioRxiv preprint first posted online Aug. 1, 2019; 

http://dx.doi.org/10.1101/717355
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

  461 

Figure 2. Taxonomic resolution in in metabarcoding datasets of 14 deep-sea sediment sites with four 
bioinformatic pipelines. Metazoan taxonomic assignment quality based on the 18S (top), COI (centre) and 16S 
(bottom) marker genes. BLAST hit identity of all metazoan clusters detected is given for four bioinformatic 
pipelines: DADA2, DADA2 curated with LULU at 84/90% minimum match, DADA2 clustered with swarm v2, 
and DADA2 clustered with swarm v2 and curated with LULU at 84/90% minimum match. BLAST hit identity 
for prokaryotes is given for two pipelines: DADA2 and DADA2 with swarm v2. 
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For metazoan loci, while clustering significantly decreased the number of OTUS detected, 462 

it increased the amount of clusters not assigned up to the phylum level in both loci (~10-20% 463 

increase, Fig. 2). In the 18S dataset, clustering led to the decrease in abundance of dominant taxa 464 

such as nematodes and non-dominant taxa such as cnidarians and poriferans (Fig. 2, Fig. 3). 465 

Similarly, for COI, clustering led to a decreased abundance of dominant taxa such as poriferans 466 

and cnidarians, while the number of clusters assigned to arthropods and molluscs increased (Fig. 467 

2, Fig. 3). Changes were less marked for 16S data (Fig. 2), yet the number of some taxa clearly 468 

increased (i.e. Thaumarchaeota and Gammaproteonbacteria) whereas others decreased (i.e. 469 

Omnitrophicaeota). 470 

For COI and 18S datasets, PERMANOVAs were performed to evaluate the effect of LULU 471 

curation at two minimum match thresholds. Multivariate analyses on clustered and non-clustered 472 

datasets showed significant differences in community structure between bioinformatic pipeline (i.e. 473 

with or without LULU), sites, and cores nested within sites (Table 3). LULU had a significant 474 

effect on taxonomic structure resolved, even though the percentage variation it explained was only 475 

around 1.3% for 18S and 0.5% for COI (R2 values in Table 3), compared to 40-50% variation 476 

explained by sites, reflecting the predominant effect of biological signatures over bioinformatic 477 

processing in the resolution of community structure. Comparing the taxonomic composition 478 

resolved by all pipelines showed that LULU curation of ASVs or OTUS resulted in detected 479 

community compositions similar to non-curated datasets, although it increased the relative 480 

abundance of non-dominant taxa by decreasing the abundance of dominant phyla such as 481 

nematodes in 18S and cnidarians in COI (Fig. 3). 482 

  483 
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 484 

Figure 3. Patterns of relative cluster abundance resolved by different bioinformatic 
pipelines (ASV-centred on the left, OTU-centred on the right) in 14 deep-sea sites, 
using the 18S (top), COI (centre), and 16S (bottom) marker genes. LULU curation 
and clustering increase the abundance of non-dominant taxonomic groups in both 
metazoan loci, while this is not the case for prokaryotes. 
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Overall, community differences were visualized using PCoA ordinations of Jaccard 485 

distance matrices and showed that the different pipelines resolved the same ecological patterns, in 486 

which, consistently with the PERMANOVAs, the site effect was predominant (Fig. S 4). 487 

 488 

 489 

 490 

3 DISCUSSION 491 

3.1 ASVs or OTUs for metazoans? 492 

The rise of HTS and the subsequent use of metabarcoding have revolutionized 493 

microbiology by unlocking the access to uncultivable microorganisms, which represent by far the 494 

great majority of prokaryotes (Klappenbach, Saxman, R., & Schmidt, 2001). The development and 495 

improvement of molecular and bioinformatic methods to perform inventories were historically 496 

primarily developed for 16S rRNA barcode loci, before being transferred to the eukaryotic 497 

LOCUS df SS Pseudo-F P(>F) R2 df SS Pseudo-F P(>F) R2

Pipeline 2 0.755 5.62 0.001 0.014 Pipeline 2 0.695 2.97 0.0001 0.012
Site 13 24.238 27.79 0.001 0.455 Site 13 23.658 15.57 0.0001 0.410
Site:Core 28 22.734 12.10 0.001 0.427 Site:Core 28 23.74 7.25 0.0001 0.412
Residuals 82 5.505 0.103 Residuals 82 9.584 0.166
Total 125 53.228 1.000 Total 125 57.677 1.000

Pipeline 2 0.262 4.75 0.0001 0.005 Pipeline 2 0.244 2.68 0.0001 0.004
Site 13 29.555 82.47 0.0001 0.557 Site 13 27.525 46.61 0.0001 0.498
Site:Core 26 21.069 29.40 0.0001 0.397 Site:Core 26 24.984 20.31 0.0001 0.434
Residuals 78 2.15 0.041 Residuals 78 3.543 0.064
Total 119 53.036 1.000 Total 119 55.296 1.000

COI

18S-V1 18S-V1

COI

Dada2+LULUDada2+swarm+LULU

Table 3. Effect of LULU curation on community structure detected in 14 deep-sea sites. Results 
of the permutational analysis of variance (PERMANOVA) of the rarefied OTU richness in 
clustered (Dada2+swarm+LULU) and non-clustered (Dada2+LULU) datasets, for the two genes 
studied. The tests were performed by permuting 9999 times using Jaccard distances. The pipeline 
and core effects were evaluated by permuting within sites. 
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kingdom based on the use of barcode markers such as 18S rRNA, ITS, or mitochondrial markers 498 

such as COI (Bellemain et al., 2010; Valentini et al., 2009). Thus, most bioinformatics pipelines 499 

were initially developed accounting for intrinsic properties of prokaryotes and concepts inherent to 500 

microbiology (Boyer et al., 2016; Caporaso et al., 2010; Schloss et al., 2009), before being 501 

transferred to eukaryotes in general or metazoans in particular. Such transfers are not always 502 

straightforward, and require adaptations accounting for differences in both concepts and basic 503 

biological features. One example is the question of the relevance of the use of amplicon sequence 504 

variants (ASVs), advocated to replace OTUs “… as the standard unit of marker-gene analysis and 505 

reporting” (Callahan et al., 2017): an advice for microbiologists that may not apply when working 506 

on metazoans. 507 

The results on the mock samples showed that ASV-centred datasets produced using 508 

DADA2-alone are likely to be unsuited for metazoan metabarcoding using the 18S and COI 509 

barcode markers, as single individuals produced very different numbers of ASVs, therefore not 510 

reflecting actual species composition. Clustering ASVs into OTUs using swarm v2 still led to 511 

inflated diversity estimates, as despite a unique specimen of each species was used in the mock 512 

communities, some still produced up to ten OTUs for both loci (Table 2). This result suggests that 513 

even in quality-filtered and clustered datasets, diversity of some taxa will still be overestimated 514 

unless high clustering thresholds are used, which may in turn lead to the loss of diversity through 515 

the merging of distinct taxa. Intra-individual variation is a recognised problem in metabarcoding, 516 

known to generate spurious clusters (Brown et al., 2015), especially in the COI barcode marker. 517 

Indeed, this gene region has increased intra-individual variation due to heteroplasmy and the 518 

abundance of pseudogenes, such as NUMTs, playing an important part of the supernumerary OTU 519 

richness in COI-metabarcoding (Bensasson, Zhang, Hartl, & Hewitt, 2001; Song, Buhay, Whiting, 520 

& Crandall, 2008). Together with clustering, LULU curation proved effective in limiting the 521 
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number of multiple clusters produced by single individuals, confirming its efficiency to correct for 522 

intra-individual diversity (Table 2).  523 

3.2 Adapting pipelines to marker properties 524 

As seen above for COI, when considering a single marker, the biology of the organisms 525 

together with the properties of the gene itself determine its level of intra-individual and intraspecific 526 

diversity. Concerted evolution is a common feature of SSU rRNA markers such as 16S (Hashimoto, 527 

Stevenson, & Schmidt, 2003; Klappenbach et al., 2001) and 18S (Carranza, Giribet, Ribera, 528 

Baguñà, & Riutort, 1996) that limits the amount of intra individual polymorphism. Despite a 529 

number of 16S rRNA variants estimated to be 2.5-fold greater than the number of bacterial species 530 

(Acinas et al., 2004), the reproductive mode and pace of selection in microbial populations is likely 531 

to lead to locally lower level of intraspecific variation than the one expected for 18S and COI in 532 

metazoans for example. In addition, in metazoans, a lower level of diversity is expected for the 533 

slower evolving 18S (Carranza et al., 1996), than for COI. This may explain the lower ASV 534 

(DADA2) to OTU (DADA2+swarm) ratios observed here for 16S (~1.4) compared to 18S (~1.9) 535 

and COI (~2.6) data, underlining the different influence –and importance- of clustering on these 536 

loci, and the need for a versatile marker by marker choice for clustering parameters. 537 

The COI locus allowed the detection of all ten species present in the mock samples, 538 

compared to seven in the 18S dataset (Table 2). This locus also provided much more accurate 539 

assignments, most of them correct at the genus (and species) level, confirming that COI uncovers 540 

more metazoan species and offers a better taxonomic resolution than 18S (Clarke, Beard, Swadling, 541 

& Deagle, 2017; Tang et al., 2012). The results also confirm an important variation in the 542 

amplification success across taxa (Bhadury et al., 2006; Carugati, Corinaldesi, Dell’Anno, & 543 

Danovaro, 2015), supporting the present approach combining nuclear and mitochondrial markers 544 
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to achieve more comprehensive biodiversity inventories (Cowart et al., 2015; Drummond et al., 545 

2015; Zhan, Bailey, Heath, & Macisaac, 2014). 546 

While clustering and LULU curation improved COI results in the mock communities 547 

(where species always co-occurred), they were associated with a decrease in taxonomic resolution 548 

for 18S data, as some closely related species were merged, i.e. the vesicomyid bivalves, the 549 

gastropod, and the shrimp species (Table 2). When studying natural habitats, very likely to harbour 550 

closely related co-occurring species, both LULU curation and clustering are likely to lead to the 551 

loss of true species diversity for low-resolution markers such as 18S. Optimal results in the mock 552 

samples, i.e. delivering the best balance between the limitation of spurious clusters and the loss of 553 

true diversity, were obtained with LULU curation at 90% for 18S and 84% for COI, highlighting 554 

the importance of adjusting bioinformatic correction tools to each barcode marker, a step for which 555 

mock communities are most adequate.  556 

 557 

3.3 Application to real communities 558 

The mock communities we used here did not contain several haplotypes of the same species 559 

(intraspecific variation), as is most often the case in environmental samples. This prevents us from 560 

generalizing the comparable results of LULU obtained with or without clustering to more complex 561 

communities. As distinct haplotypes do not always co-occur in nature, LULU curation of ASVs 562 

alone is not suited to correct for haplotype diversity, and clustering ASVs may therefore still be 563 

necessary to produce datasets that reflect species rather than gene diversity. As expected, results 564 

on natural samples showed distinct answers to this question for 18S and COI. When applying 565 

LULU to ASVs (DADA2) versus OTUs (DADA2+swarm) on 18S, similar numbers of detected 566 

clusters were obtained (e.g. average of 137 ± 7 and 140 ± 8 clusters per sample after application at 567 

84% on ASVs and OTUs respectively), again suggesting a limited added effect of clustering for 568 
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this marker once DADA2 and LULU are applied (Fig. 1). This is in line with its slow evolutionary 569 

rate (Carranza et al., 1996) leading to a limited number of haplotypes per species compared to COI. 570 

In contrast, after LULU curation of the COI ASV dataset, nearly twice the number of clusters were 571 

obtained (574 ± 38 at 84% and 742 ± 53 at 90%) compared to the LULU-curated OTU dataset (334 572 

± 21 for 84% and 433 ± 31 for 90%). This confirms the need for clustering on COI and the fact 573 

that LULU curation of ASVs is not sufficient to account for intraspecific diversity in natural 574 

samples for such a highly polymorphic marker.  575 

Finally, prokaryotic alpha diversity was less affected by the clustering of ASVs (Table 1, 576 

Fig. 1), illustrating their lower intra-genomic variability (Pei et al., 2010) and the possibly lower 577 

diversity within ecotypes. Nevertheless, the differences suggest the occurrence of very closely 578 

related sequences of 16S rRNA, possibly belonging to the same ecotype/species. Such entities may 579 

still be important to delineate in studies aiming for example at identifying species associations (i.e. 580 

symbiotic relationships) across large distances and ecosystems, where drift or selection can lead to 581 

slightly different ASVs in space and time, with their function and association remaining stable.  582 

 583 

3.4 Influence on beta diversity 584 

After focusing on alpha diversity estimates and the accuracy of inventories, the analysis of 585 

taxonomic structure showed that the non-clustered, clustered, and LULU-curated datasets resolved 586 

similar ecological patterns (Fig. S 4) and community compositions (Fig. 3), although differences 587 

in abundance were observed (Fig. 2). This is in accordance with other studies reporting severe 588 

impacts of bioinformatic parameters on alpha diversity while comparable patterns of beta diversity 589 

were observed, at least down to a minimum level of clustering stringency (Bokulich et al., 2013; 590 

Xiong & Zhan, 2018).  591 
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Clustering and LULU curation mainly led to the decrease of the number of clusters assigned 592 

to dominant taxa in both loci, i.e. nematodes for 18S, cnidarians and to lesser extent molluscs for 593 

COI. This is likely attributable to the low resolutive power of 18S, already acknowledged in general 594 

and for nematodes in particular (Derycke, Vanaverbeke, Rigaux, Backeljau, & Moens, 2010). 595 

Similarly the lack of resolution of COI for cnidarians has long been known (Hebert, Ratnasingham, 596 

& de Waard, 2003). Clustering also introduced more OTUs that could not be assigned at the phylum 597 

level with BLAST (Fig. 3), confirming the limitations of assigning taxonomy at the OTU level, as 598 

the representative sequence chosen for taxonomic assignment can lead to taxonomic ambiguity. 599 

 600 

3.5 Assignment comparison 601 

Finally, compared to BLAST assignment, lower taxonomic resolution was observed using 602 

the RDP Bayesian Classifier on the mock samples for 18S (Fig. S 2) and for COI when using the 603 

full MIDORI database. With this database, only five phyla were detected in the whole dataset: 604 

Arthropoda, Chordata, Mollusca, Nemertea, Porifera (data not shown). This is likely due to the size 605 

of the RDP training sets available for this study, and to the low coverage of deep-sea species in 606 

public databases. Small databases, taxonomically similar to the targeted communities, and with 607 

sequences of the same length as the amplified fragment of interest, are known to maximise accurate 608 

identification (Macheriotou et al., 2019). This limitation of databases, rather than the method itself, 609 

was confirmed by results using a reduced marine-only COI database. The latter (containing the 610 

barcodes of the mock species) resulted in accurate RDP assignments in the mock samples when 611 

the phylum bootstrap level was ≥ 98 (Fig. S 2), although the majority of clusters remained 612 

unassigned in the full dataset (89% compared to 45% with BLAST). The development of custom-613 

built marine RDP training sets, without overrepresentation of terrestrial species, is therefore needed 614 

for this Bayesian assignment method to be effective on deep-sea datasets. With reduced trainings 615 
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sets, removing clusters with phylum bootstrap-level < 98 could be an efficient way to increase 616 

taxonomic quality of deep-sea metabarcoding datasets. At present, BLAST seems however the 617 

most efficient assignment method for deep-sea metabarcoding data, even though it has to be kept 618 

in mind that hit identities tend to be low, especially for COI, making it hard to work at taxonomic 619 

levels beyond phylum or class (Fig. 2). 620 

 621 

CONCLUSIONS AND PERSPECTIVES 622 

In this work based on mock communities and natural samples, we propose a new pipeline 623 

using several recent algorithms allowing to improve the quality of biodiversity inventories based 624 

on metabarcoding data. Results showed that ASV data should be produced and communicated for 625 

reusability and reproducibility following the recommendations of Callahan et al. (2017). This is 626 

especially useful in large projects spanning wide geographic zones and time scales, as different 627 

ASV datasets can be easily merged a posteriori, and clustered if necessary afterwards. 628 

Nevertheless, clustering ASVs into OTUs will be required to obtain accurate inventories, at least 629 

for metazoan communities. Considering 16S polymorphism observed in prokaryotic species 630 

(Acinas et al., 2004) and the possible geographic segregation of their populations, clustering may 631 

also be required in prokaryotic datasets, for example in studies screening for species associations 632 

(i.e. symbiotic or parasitic relationships, considering that symbionts may be prone to differential 633 

fixation through enhanced drift; Shapiro, Leducq, & Mallet, 2016).  634 

Results also demonstrated that LULU curation is a good alternative to arbitrary relative 635 

abundance filters in metabarcoding pipelines. They also underline the need to adapt parameters for 636 

curation (e.g. LULU curation at 90% for 18S and 84% for COI) and clustering to each gene used 637 

and taxonomic compartment targeted, in order to identify an optimal balance between the 638 

correction for spurious clusters and the merging of closely related species.  639 
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Finally, the results also show that accurate taxonomic assignments of deep-sea species can 640 

be obtained with the RDP Bayesian Classifier, but only with reduced databases containing 641 

ecosystem-specific sequences. 642 

The pipeline is publicly available on Gitlab (https://gitlab.ifremer.fr/abyss-project/), and 643 

allows the use of sequence data obtained from libraries produced by double PCR or adaptor ligation 644 

methods, as well as having built-in options for using six commonly used metabarcoding primers. 645 

 646 
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