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 89 

Abstract: 90 

Host-microbe interactions play crucial roles in marine ecosystems, but we still have very 91 
little understanding of the mechanisms that govern these relationships, the evolutionary 92 
processes that shape them, and their ecological consequences. The holobiont concept is a 93 
renewed paradigm in biology that can help to describe and understand these complex systems. It 94 
posits that a host and its associated microbiota, living together in a stable relationship, form the 95 
holobiont, and have to be studied together, as a coherent biological and functional unit, to 96 
understand its biology, ecology, and evolution. Here we discuss critical concepts and 97 
opportunities in marine holobiont research and identify key challenges in the field. We highlight 98 
the potential economic, sociological, and environmental impacts of the holobiont concept in 99 
marine biological, evolutionary, and environmental sciences with comparisons to terrestrial 100 
science whereversciences where appropriate. Given the connectivity and the unexplored 101 
biodiversity ofspecific to marine ecosystems, a deeper understanding of such complex systems 102 
requires further technological and conceptual advances. For, e.g. the marine scientific 103 
community, thedevelopment of controlled experimental model systems for holobionts from all 104 
major lineages and the modeling of (info)chemical-mediated interactions between organisms. 105 
The most significant challenge is to bridge functionalcross-disciplinary research on tractable and 106 
original model systems and global approaches addressingin order to address key ecological and 107 
evolutionary questions. This will be crucial for establishingto decipher the roles of marine 108 
holobionts in biogeochemical cycles, but also developing concrete applications of the holobiont 109 
concept in aquaculture and marine ecosysteme.g. to increase yield or disease resistance in 110 
aquacultures or to protect and restore marine ecosystems through management projects. 111 
  112 
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Glossary1 113 

Anna Karenina principle – a number of factors can cause a system to fail, but only a narrow 114 
range of parameters characterizes a working system; based on the first sentence of Leo 115 
Tolstoy’s “Anna Karenina”: “Happy families are all alike; every unhappy family is 116 
unhappy in its own way.”  117 

Dysbiosis – microbial imbalance in a symbiotic community that affects the health of the host. 118 
Anna Karenina principle – a number of factors can cause a system to fail, but only a narrow 119 

range of parameters characterizes a working system; based on the first sentence of Leo 120 
Tolstoy’s “Anna Karenina” (1878): “Happy families are all alike; every unhappy family 121 
is unhappy in its own way” (Zaneveld et al. 2017).  122 

Aposymbiotic culture – a culture of a host or a symbiont without its main symbiotic partner(s) 123 
(e.g. Kelty and Cook 1976). In contrast to gnotobiotic cultures, aposymbiotic cultures are 124 
usually not germ-free. 125 

Biological control (biocontrol) – methods offor controlling diseases or pests by introducing or 126 
supporting natural enemies of the former (see e.g. Hoitink and Boehm 1999).  127 

Biomonitoring – the use of living organisms as indicator for the health of an environment or 128 
ecosystem.  129 

Community assembly process – the accumulation of species in a novel habitat, according to 130 
Vellend the four main forces relevant for microbial community assembly are 131 
evolutionary diversification, dispersal, selection, and ecological drift (Vellend 2010; 132 
Nemergut et al. 2013). 133 

Dysbiosis – microbial imbalance in a symbiotic community that affects the health of the host 134 
(Egan and Gardiner 2016). 135 

Ecological process – the processes responsible for the functioning and dynamics of ecosystems 136 
including biogeochemical cycles, community assembly processes, interactions between 137 
organisms, and climatic processes (see e.g. Bennett et al. 2009).  138 

Ecosystem services – any direct or indirect benefits that humans can draw from an ecosystem; 139 
they include provisioning services (e.g.,. food), regulating services (e.g.,. climate), 140 
cultural services (e.g.,. recreation), and supporting services (e.g.,. habitat formation).) 141 
(Millennium Ecosystem Assessment Panel 2005). 142 

Ectosymbiosis – a symbiotic relationship in which symbionts live on the surface of a host. This 143 
includes, for instance, algal biofilms, the skin microbiome, but also extracellular 144 
symbionts on the digestive glands, such as gut bacteria. 145 

EndosymbiosisEctosymbiosis – a symbiotic relationship in which symbionts live on the surface 146 
of a host. This includes, for instance, algal biofilms or the skin microbiome (Nardon and 147 
Charles 2001). 148 

Emergent property – a property of complex systems (e.g. holobionts), which arises from 149 
interactions between the components and that is not the sum of the component properties 150 
(see e.g. Theis 2018). 151 

Endosymbiosis (sometimes also referred to more precisely as endocytobiosis; Nardon and 152 
Charles 2001) – a symbiotic relationship in which a symbiont lives inside the host cells; 153 
prominent examples are mitochondria, plastids/photosymbionts, or nitrogen fixing 154 

                                                 
1 If no other examples of the use of each term are cited below, the definition was based on the 
online version of the Merriam-Webster dictionary (2019): https://www.merriam-webster.com/  
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bacteria in plant root nodules. Compared to ectosymbiosis these relationships often 155 
exhibit a higher degree of interdependence and co-evolution.See also ectosymbiosis.  156 

Gnotobiosis – the condition in which all organisms present in a culture can be controlled., i.e. 157 
germ-free (axenic) organisms or organisms with a controlled community of symbionts. 158 
Gnotobiotic individuals may be obtained e.g. by surgical removal from the mother 159 
(vertebrates) or by surface sterilization of seeds (plants) and subsequent handling in a 160 
sterile environment and possible inoculation with selected microbes (Hale et al. 1973; 161 
Williams 2014).  162 

Holobiont – an ecological (and evolutionary) unit of different species living together in 163 
symbiosis. 164 

Horizontal transmission – acquisition of the associated microbiome from the environment.  165 
Host – the largest partner (in size) in a symbiotic community. 166 
Infochemical – a usually diffusible chemical compound that mediates inter- and intraspecific 167 

communication. 168 
Microbial gardening – the act of frequently releasing growth-enhancing or inhibiting chemicals 169 

or metabolites that favor the development of a microbial community beneficial to the 170 
host. 171 

Microbiome – the combined genetic information encoded by the microbiota; may also refer to 172 
the microbiota itself. 173 

Microbiota – all microorganisms present in a particular environment or associated with a 174 
particular host. 175 

Nested ecosystems – a view of ecosystems where each individual system can be decomposed 176 
into smaller systems and/or considered part of a larger system, all of which still qualify as 177 
ecosystems. 178 

Phagocytosis – a process by which a eukaryotic cell ingests other cells or solid particles. 179 
Phycosphere – the physical envelope surrounding a phytoplankton cell; usually rich in organic 180 

matter. 181 
Phylosymbiosis – congruence in the phylogeny of different hosts and the composition of their 182 

associated microbiota. 183 
Holism – a theory that organisms are best viewed as intimately interacting parts of a whole, 184 

which is more than the sum of the parts. 185 
Holobiont – an ecological unit of different species living together in symbiosis. Whether or to 186 

what extent holobionts are also a unit of evolution is still a matter of debate (Douglas and 187 
Werren 2016). 188 

Hologenome – the combined genomes of the host and all members of its microbiota; (Rosenberg 189 
et al. 2007a; Zilber-Rosenberg and Rosenberg 2008)  190 

Horizontal transmission – acquisition of the associated microbiome from the environment (e.g. 191 
Roughgarden 2019, preprint).  192 

Host – the largest or dominant partner in a holobiont. 193 
Infochemical – a chemical compound, usually diffusible, that carries information on the 194 

environment, such as the presence of other organisms, and can be used to mediate inter- 195 
and intraspecific communication (Dicke and Sabelis 1988). 196 

Microbial gardening – the act of frequently releasing growth-enhancing or inhibiting chemicals 197 
or metabolites that favor the development of a microbial community beneficial to the host 198 
(see e.g. Saha and Weinberger 2019). 199 

Commenté [SAH7]: The word organism is restruictive when 
it comes to ot the definition of a term as large as holism (i.e. 
beyond ecology). The definition in the early part of ther 
introduction fits better. In order to avoid repetition, maybe the 
Oxford dictionnary definition would be better? 
 
"the theory that parts of a whole are in intimate 
interconnection, such that they cannot exist independently of 
the whole, or cannot be understood without reference to the 
whole, which is thus regarded as greater than the sum of its 
parts. Holism is often applied to mental states, language, and 
ecology."  

Commenté [C8]: This definition is much larger than the one 
given in the summary : « It posits that a host and its 
associated microbiota, living together in a stable relationship, 
form the holobiont”. Microorganisms are usually central in 
holobiont definitions. 
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Microbiome – the combined genetic information encoded by the microbiota; may also refer to 200 
the microbiota itself or the microbiota and its environment (see Marchesi and Ravel 201 
2015). 202 

Microbiota – all microorganisms present in a particular environment or associated with a 203 
particular host (see Marchesi and Ravel 2015). 204 

Nested ecosystems – a view of ecosystems where each individual system, like a “Russian doll”, 205 
can be decomposed into smaller systems and/or considered part of a larger system 206 
(Figure 2), all of which still qualify as ecosystems (e.g. McFall-Ngai et al. 2013). 207 

Phagocytosis – a process by which a eukaryotic cell ingests other cells or solid particles, e.g. the 208 
uptake of bacteria by sponges (Leys et al. 2018). 209 

Phycosphere – the physical envelope surrounding a phytoplankton cell; usually rich in organic 210 
matter (see Amin et al. 2012). 211 

Phylosymbiosis – congruence in the phylogeny of different hosts and the composition of their 212 
associated microbiota (Brooks et al. 2016). 213 

Rasputin effect – the phenomenon that commensals and mutualists can become parasitic in 214 
certain conditions; (Overstreet and Lotz 2016); after the Russian monk Rasputin who 215 
became the confidant of the Tsar of Russia, but later helped bring down the Tsar’s empire 216 
during the Russian revolution. 217 

Sponge loop – sponges efficiently recycle dissolved organic matter turning it into detritus that 218 
becomes food for other consumers. 219 

Sponge loop – sponges efficiently recycle dissolved organic matter turning it into detritus that 220 
becomes food for other consumers (de Goeij et al. 2013). 221 

Symbiont – an organism living in symbiosis; usually used to refer to but not restrictedrefers to 222 
the smaller/microbial partners living in commensalistic or mutualistic relationships (see 223 
also host).), but also includes organisms in commensalistic and parasitic relationships. 224 

Symbiosis – a close and lasting or recurrent (e.g. over generations) relationship between 225 
organisms living together; includes usually refers to mutualistic, commensalistic, and 226 
parasitic relationships, but also includes commensalism and parasitism. 227 

Vertical transmission – acquisition of the associated microbiome by a new generation of hosts 228 
from the parents (as opposed to horizontal transmission). 229 

Vertical transmission – acquisition of the associated microbiome by a new generation of hosts 230 
from the parents (as opposed to horizontal transmission; e.g. Roughgarden 2019, 231 
preprint). 232 

Marine holobionts from their origins to the present 233 

The history of the holobiont concept 234 

Current theory proposesHolism is a philosophical notion first proposed by Aristotle in 235 
the 4th century BC. It states that systems should be studied in their entirety, with a focus on the 236 
interconnections between their various components rather than on the individual parts (Met. 237 
Z.17, 1041b11–33). Such systems have emergent properties that result from the behavior of a 238 
system that is ‘larger than the sum of its parts’. However, a major shift away from holism 239 
occurred during the Age of "Enlightenment" when the dominant thought summarized as 240 
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“dissection science” was to focus on the smallest component of a system as a means of 241 
understanding it.  242 

The idea of holism started to regain popularity when the endosymbiosis theory was first 243 
proposed by Mereschkowski (1905) and further developed by Wallin (1925). Still accepted 244 
today, this theory posits a single origin for eukaryotic cells through the symbiotic assimilation of 245 
prokaryotes to form first mitochondria and later plastids (the latter through several independent 246 
symbiotic events) via phagocytosis (reviewed in Archibald 2015). These ancestral and founding 247 
symbiotic events, which prompted the metabolic and cellular complexity of eukaryotic life, most 248 
likely occurred in the ocean (Martin et al. 2008). 249 

Despite the general acceptance of this so-called endosymbioticthe endosymbiosis theory, 250 
the term ‘holobiont’ did not immediately enter the scientific vernacular. It was coined by Lynn 251 
Margulis in 1990, who proposed that evolution has worked mainly through symbiosis-driven 252 
leaps that merged organisms into new forms, referred to as ‘holobionts’, and only secondarily 253 
through gradual mutational changes (Margulis and Fester 1991; O’Malley 2017). However, the 254 
concept didwas not become widely used until it was co-opted by coral biologists over a decade 255 
later. Corals and dinoflagellate algae of the family Symbiodiniaceae are one of the most iconic 256 
examples of symbioses found in nature; most corals are incapable of long-term survival without 257 
the products of photosynthesis provided by their endosymbiotic algae. Rohwer et al. (2002) were 258 
the first to use the word “holobiont” to describe a unit of selection sensu Margulis (Rosenberg et 259 
al. 2007b) for corals, where the holobiont comprised the cnidarian polyp (host), algae of the 260 
family Symbiodiniaceae, various ectosymbionts (endolithic algae, prokaryotes, fungi, other 261 
unicellular eukaryotes), and viruses. 262 

Although initially driven by studies of marine organisms, much of the research on the 263 
emerging properties and significance of holobionts has since been carried out in other fields of 264 
research: the microbiota of the rhizosphere of plants or the animal gut became predominant 265 
models and have led to an ongoing paradigm changeshift in agronomy and medical sciences 266 
(Bulgarelli et al. 2013; Shreiner et al. 2015; Faure et al. 2018). Holobionts occur in terrestrial 267 
and aquatic habitats alike, and several analogies between these ecosystems can be made. For 268 
example, it is clear thatin all of these habitats, interactions within and across holobionts such as 269 
induction of chemical defenses, nutrient acquisition, or biofilm formation are mediated by 270 
chemical cues and signals in the environment, dubbed infochemicals (Loh et al. 2002; Harder et 271 
al. 2012; Rolland et al. 2016; Saha et al. 2019). TheNevertheless, we can identify two major 272 
differences acrossbetween terrestrial and aquatic systems are due to. First, the physicochemical 273 
properties of water resultingresult in higher chemical connectivity and signaling between macro- 274 
and micro-organisms in aquatic or moist environments. In marine ecosystems, carbon fluxes also 275 
appear to be swifter and trophic modes more flexible, leading to higher plasticity of functional 276 
interactions across holobionts (Mitra et al. 2013). Moreover, dispersal barriers are usually lower, 277 
allowing for faster microbial shifts in marine holobionts (Kinlan and Gaines 2003; Martin-278 
Platero et al. 2018). FinallySecondly, phylogenetic diversity at broad taxonomic scales (i.e.,. 279 
supra-kingdom, kingdom and phylum levels), is higher in aquatic realms than oncompared to 280 
land, with much of the aquatic diversity yet to be uncovered (de Vargas et al. 2015; Thompson et 281 
al. 2017), especially for marine viruses (Middelboe and Brussaard 2017; Gregory et al. 2019). 282 
The recent discovery of thissuch astonishing marine microbial diversity andin parallel with the 283 
scarcity of marine holobiont research suggests a high potential for complex cross-lineage 284 
interactions yet to be explored in marine holobiont systemsholobionts (Figure 1). 285 
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These examples and the associated debate over how to define organisms or functional 286 
entities has led to the revival of ‘holism’, a philosophical notion first proposed by Aristotle in 287 
the 4th century BC. However, a major shift happened during the Age of "Enlightenment" when 288 
the dominant thought summarized as “dissection science” was to focus on the smallest 289 
component of a system in order to understand it better. By contrast, holistic thinkingThe states 290 
that systems should be studied in their entirety, with a focus on the interconnections between 291 
their various components rather than on the individual parts (Met. Z.17, 1041b11–33). Such 292 
systems have emergent properties that result from the irreducible behavior of a system that is 293 
‘larger than the sum of its parts’. In this context the boundaries of holobionts are usually 294 
delimited by a physical gradient, which corresponds to the area of local influence of the host, e.g. 295 
in unicellular algae the so-called phycosphere (Seymour et al. 2017). However, they may also 296 
be defined in a context-dependent way as a ‘Russian Matryoshka doll’, encompassingsetting the 297 
boundaries of the holobiont depending on the interactions and biological functions that are being 298 
considered. Thus holobionts may encompass all the levels of host-symbiont associations from 299 
intimate endosymbiosis with a high degree of co-evolution up to the community and ecosystem 300 
level; a concept referred to as “nested ecosystems” (Figure 2; McFall-Ngai et al. 2013; Pita et 301 
al. 2018).  302 

Such a viewconceptual perspective raises fundamental questions for studies ofwhen 303 
studying the evolution of holobionts, especially regarding the relevant units of selection and the 304 
role of co-evolution. For instance, plant and animal evolution involves new functions co-305 
constructed by members of the holobiont or elimination of functions redundant between them 306 
(Selosse et al. 2014). Rosenberg and Zilber-Rosenberget al. (2018) have(2010) and Rosenberg 307 
and Zilber-Rosenberg (2018) argued that all animals and plants can be considered holobionts, 308 
and thus advocate the hologenome theory of evolution. It proposes that natural selection acts at 309 
the level of the holobiont and the hologenome (i.e., the combined genomes of the host and all 310 
members of its microbiota; Rosenberg et al. 2007a; Zilber-Rosenberg and Rosenberg 2008)., 311 
suggesting that natural selection acts at the level of the holobiont and its hologenome. This 312 
interpretation of Margulis’ definition of a ‘holobiont’ considerably broadened fundamental 313 
concepts in evolution and speciation and has not been free of criticism (Douglas and Werren 314 
2016), especially when applied on aat the community or ecosystem level (Moran and Sloan 315 
2015). More recently, it has been shown that species that interact indirectly with the host can also 316 
be important in shaping coevolution within mutualistic multi-partner assemblages (Guimarães et 317 
al. 2017). Thus, the holobiont concept and itsthe underlying complexity of holobiont systems 318 
should be further considered when addressing evolutionary and ecological questions.  319 

Marine holobiont models 320 

Today, an increasing number of marine model organisms, both unicellular and multicellular, are 321 
being used in holobiont research, (Figure 1), often with different emphasis and levels of 322 
experimental control, but altogether covering a large range of scientific topics. Here, we provide 323 
several illustrative examples of this diversity and some of the insights they have provided. 324 

Environmental or “semi-controlled” models: Radiolarians, i.e. holobiont systems in 325 
which microbiome composition is not or only partially controlled: radiolarians and 326 
foraminiferans (both heterotrophic protistsprotist dwellers harboring endosymbiotic microalgae) 327 
are emerging as critical ecological models for unicellular photosymbiosis due to their ubiquitous 328 
presence in the world’s oceans (Decelle et al. 2015; Not et al. 2016). The discovery of deep-sea 329 
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hydrothermal vents revealed symbioses of animals with chemosynthetic bacteria that have later 330 
been found in many other marine ecosystems (Dubilier et al. 2008; Rubin-Blum et al. 331 
2019)(Dubilier et al. 2008; Rubin-Blum et al. 2019) and frequently exhibitedexhibit high levels 332 
of metabolic and taxonomic diversity (Duperron et al. 2008; Petersen et al. 2016; Ponnudurai et 333 
al. 2017). The cosmopolitan haptophyte Emiliania huxleyi, promoted by associated bacteria 334 
(Seyedsayamdost et al. 2011; Segev et al. 2016), produces key intermediates in the carbon and 335 
sulfur biogeochemical cycles, making it an important model phytoplankton species.   336 

Controlled bi- or trilateral associations: Only a few models, covering a small part of the 337 
overall marine biodiversity, are currently being cultivated ex-situ and can be used in fully 338 
controlled experiments, where they can be cultured aposymbiotically (i.e., without symbionts).. 339 
The flatworm Symsagittifera (= Convoluta) roscoffensis (Arboleda et al. 2018), the sea anemone 340 
Exaiptasia (Baumgarten et al. 2015; Wolfowicz et al. 2016), the upside-down jellyfish 341 
Cassiopea (Ohdera et al. 2018), and their respective intracellular green and dinoflagellate algae 342 
have, in addition to corals, become models for fundamental research on evolution of metazoan-343 
algal photosymbiosis. In particular the sea anemone, Exaiptasia has been used to explore 344 
photobiology disruption and restoration of cnidarian symbioses (Lehnert et al. 2012). The 345 
Vibrio-squid model provides insights into the effect of microbiota on animal development, 346 
circadian rhythms, and immune systems (McFall-Ngai 2014). The unicellular green alga 347 
Ostreococcus, an important marine primary producer, has been shown to exchange vitamins with 348 
specific associated bacteria (Cooper et al. 2019). The green macroalga Ulva mutabilis has 349 
enabled the exploration of bacteria-mediated growth and morphogenesis including the 350 
identification of original chemical interactions in the holobiont (Wichard 2015; Kessler et al. 351 
2018). Although the culture conditions in these highly-controlled model systems differ from the 352 
natural environment, these systems are essential to gain elementary mechanistic understanding of 353 
the functioning, the roles, and thus also the evolution of marine holobionts.  354 

Marine holobionts as drivers of ecological processes 355 

MotileWork on model systems has demonstrated that motile and macroscopic marine 356 
holobionts can act as dissemination vectors for geographically restricted microbial taxa. For 357 
instance, pelagicPelagic mollusks or vertebrates have aare textbook examples of high capacity 358 
for dispersal capacity organisms (e.g.,. against currents and through stratified water layers). It has 359 
been estimated that fish and marine mammals may enhance the original dispersion rate of their 360 
microbiota by a factor of 200 to 200,000 (Troussellier et al. 2017) and marine birds may even act 361 
as bio-vectors across ecosystem boundaries (Bouchard Marmen et al. 2017). This host-driven 362 
dispersal of microbes can include non-native or invasive species as well as pathogens 363 
(Troussellier et al. 2017).  364 

A related ecological function of holobionts is their potential to sustain rare species. Hosts 365 
provide an environment that favors the growth of specific microbial communities distinct from 366 
the surrounding environment (including rare microbes). They may, for instance, provide a 367 
nutrient-rich niche in the otherwise nutrient-poor seawater (Smriga et al. 2010; Webster et al. 368 
2010; Burke et al. 2011; Chiarello et al. 2018), and the interaction between host and microbiota 369 
can allow both partners to cross biotope boundaries (e.g.,They may, for instance, provide a 370 
nutrient-rich niche in the otherwise nutrient-poor surroundings (Smriga et al. 2010; Webster et 371 
al. 2010; Burke, Thomas, et al. 2011; Chiarello et al. 2018).  Woyke 2006) and colonize extreme 372 
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environments (Bang et al. 2018). Holobionts thus contribute to marine microbial diversity and 373 
possibly resilience in the context of environmental change (Troussellier et al. 2017). 374 

Microbially regulated Lastly, biological processes regulated by microbes are important 375 
drivers of global biogeochemical cycles (Falkowski et al. 2008; Madsen 2011; Anantharaman et 376 
al. 2016). In the open ocean, it is estimated that symbioses with the cyanobacterium UCYN-A 377 
contribute ~20% to total N2 fixation (Thompson et al. 2012; Martínez-Pérez et al. 2016). In 378 
benthic systems, sponges and corals may support entire ecosystems via their involvement in 379 
nutrient cycling thanks to their microbial partners (Raina et al. 2009; Fiore et al. 2010; Cardini et 380 
al. 2015; Pita et al. 2018), functioning as sinks and sources of nutrients. In particular the “sponge 381 
loop” recycles dissolved organic matter and makes it available to higher trophic levels in the 382 
form of detritus (de Goeij et al. 2013; Rix et al. 2017). In coastal sediments, bivalves hosting 383 
methanogenic archaea have been shown to increase the benthic methane efflux by a factor of up 384 
to eight, potentially accounting for 9.5% of total methane emissions from the Baltic Sea 385 
(Bonaglia et al. 2017). 386 

 Such impressive metabolic versatility is accomplished because of the simultaneous 387 
occurrence of disparate biochemical machineries (e.g.,. aerobic and anaerobic pathways) in 388 
individual symbionts, providing new metabolic abilities to the holobiont, such as the synthesis of 389 
specific essential amino acids, photosynthesis, or chemosynthesis (Venn et al. 2008; Dubilier et 390 
al. 2008). These Furthermore, the interaction between host and microbiota can potentially extend 391 
the metabolic capabilities have the potential to extend the ecological niche of thea holobiont as 392 
well asin a way that augments its resilience to climate and environmental changes (Berkelmans 393 
and van Oppen 2006; Gilbert et al. 2010; Dittami et al. 2016; Shapira 2016; Godoy et al. 2018), 394 
or allows it to cross biotope boundaries (e.g. Woyke 2006) and colonize extreme environments 395 
(Bang et al. 2018). . It is thereforeHolobionts thus contribute to marine microbial diversity and 396 
possibly resilience in the context of global environmental changes (Troussellier et al. 2017) and 397 
it is paramount to include the holobiont concept in predictive models that investigate the 398 
consequences of human impacts on the marine realm and its biogeochemical cycles. 399 
 400 

Challenges and opportunities in marine holobiont research 401 

Marine holobiont assembly and regulation  402 

Two critical challenges that can be partially addressed by using model systems are 1) to 403 
decipher the factors determining holobiont composition; and 2) to elucidate the impacts and roles 404 
of the different partners in these complex systems over time. Some marine 405 
invertebrates,organisms such as bivalves transmit part of the microbiota maternally (Bright and 406 
Bulgheresi 2010; Funkhouser and Bordenstein 2013). In other marine holobionts, vertical 407 
transmission may be weak and inconsistent, whereas mixed modes of transmission (vertical 408 
and horizontal) or intermediate modes (pseudo-vertical, where horizontal acquisition frequently 409 
involves symbionts of parental origin) are more common (Bjork et al. 2018, preprint).(Björk et 410 
al. 2019). Identifying the factors shaping holobiont composition and understanding their 411 
evolution is highly relevant for marine organisms given that most marine hosts display a high 412 
specificity for their microbiota and even patterns of phylosymbiosis (Kazamia et al. 2016; 413 
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Brooks et al. 2016; Pollock et al. 2018), despite a highly connected and microbe-rich 414 
environment,..  415 

During microbiota transmission (whether vertical or horizontal), "selection" by the host 416 
(as opposed to "drift") is a key process in establishing or maintaining a holobiont microbial 417 
community that is distinct from the environment. The immune system of the host is one way to 418 
regulate the microbial composition ofof performing this selection in both marine and terrestrial 419 
holobionts. Perturbations in this system, and perturbations can lead to dysbiosis, and eventually 420 
microbial infections (Selosse et al. 2014; de Lorgeril et al. 2018). Dysbiotic individuals 421 
frequently display higher variability in their microbial community composition than healthy 422 
individuals, an observation in line with the “Anna Karenina principle” (Zaneveld et al. 2017), 423 
although there are exceptions to this rule (e.g., Marzinelli et al. 2015)(e.g. Marzinelli et al. 424 
2015). A specific case of dysbiosis is the so-called “Rasputin effect” where benign 425 
endosymbionts opportunistically become detrimental to the host due to processes such as 426 
reduction in immune response under food deprivation, coinfections, or environmental pressure 427 
(Overstreet and Lotz 2016). Many diseases are now interpreted as the result of a microbial 428 
imbalance and the rise of opportunistic or polymicrobial infections upon host stress (Egan and 429 
Gardiner 2016). For instance in reef-building corals, warming destabilizes cnidarian-430 
dinoflagellate associations, and some beneficial Symbiodiniacea strains switch their physiology 431 
and sequester more resources for their own growth at the expense of the coral host, leading to 432 
coral bleaching and even death (Baker et al. 2018).  433 

Another factor regulatingway of selecting a holobiont compositionmicrobial community 434 
is by chemically mediated microbial gardening. This concept has already been demonstrated 435 
for land plants, where root exudates are used by plants to manipulate microbiome composition 436 
(Lebeis et al. 2015). In marine environments, the phylogenetic diversity of hosts and symbionts 437 
suggests both conserved and marine-specific chemical interactions, but comparable studies are 438 
only starting to emerge.still in their infancy. For instance, seaweeds can chemically garden 439 
beneficial microbes, facilitating normal morphogenesis and increasing disease resistance 440 
(Kessler et al. 2018; Saha and Weinberger 2019)(Kessler et al. 2018; Saha and Weinberger 441 
2019), and seaweeds and corals structure their surface-associated microbiome by producing 442 
chemo-attractants and anti-bacterial compounds (Harder et al. 2012; Ochsenkühn et al. 2018). 443 
There are fewer examples of chemical gardening in unicellular hosts, but it seems highly likely 444 
that similar processes are in place (Gribben et al. 2017; Cirri and Pohnert 2019)(Gribben et al. 445 
2017; Cirri and Pohnert 2019). In 446 

In addition to selection and ecological drift, "dispersal" and evolutionary "diversification" 447 
have been proposed as key processes in community assembly. Both these processes are, 448 
however, difficult to quantify in microbial communities (Nemergut et al. 2013). The only data 449 
currently at our disposal to studyquantify these processes are the diversity and distribution of 450 
microbes. Considering the high connectivity of aquatic environments, differences in marine 451 
microbial communities are frequently attributed to a combination of selection and drift (e.g. 452 
Burke, Steinberg, et al. 2011), a conclusion that still requires validation. Diversification is 453 
mainly considered in the sense of coevolution or adaptation to host selection, which may also be 454 
driven by the horizontal acquisition of genes, but to our knowledge, unlike in primates (Moeller 455 
et al. 2016), no information exists on the co-speciation of host-associated microbes in marine 456 
holobionts to date. 457 

Increasing our knowledge on the contribution of these processes to holobiont community 458 
assembly in marine systems is a key challenge, especially in the context of ongoing global 459 
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change, an. Moreover, understanding of how the community and functional structure of resident 460 
microbes are resilient to perturbations remains critical to predict and promote the health of their 461 
host and the ecosystem, yet it. Yet, this notion is still missing in most mathematical or formal 462 
models, or additional information on biological interactions would be required to make the 463 
former more accurate (Bell et al. 2018)(Bell et al. 2018). 464 

Integrating marine model systems with large-scale studies 465 

By compiling what a sample of researchers today considera survey of the most important 466 
trends and challenges in the field of marine holobiont research (Figure 3), we identified two 467 
distinct opinion clusters: one focused on mechanistic understanding and work with model 468 
systems whereas another targets large-scale and heterogeneous data set analyses and predictive 469 
modeling. This illustrates that, on the one hand, the scientific community is focusing oninterested 470 
in the establishment of models for the identification of specific molecular interactions between 471 
marine organisms at a given point in space and time, up to the point of synthesizing functional 472 
mutualistic communities in vitro (Kubo et al. 2013). On the other hand, another part of the 473 
community is moving towards global environmental sampling schemes such as the TARA Oceans 474 
expedition (Pesant et al. 2015) or the Ocean Sampling Day (Kopf et al. 2015), and towards long-475 
term data series (e.g., Wiltshire et al. 2010; Harris 2010)(e.g. Wiltshire et al. 2010; Harris 2010). 476 
What emerges as both lines of research progress is the understanding that small-scale functional 477 
studies in the laboratory are inconsequential unless they aremade applicable to ecologically-478 
relevant complex systems. At the same time, large scale-studies remain mostly descriptive and 479 
withbear little predictive power unless we understand the mechanisms driving the observed 480 
processes. We illustrate the importance of integrating both approaches in Figure 3, where the 481 
node related to potential applications was perceived as a central hub at the interface between 482 
mechanistic understanding and predictive modeling.  483 

A successful example allyingmerging both functional and large-scale approaches, are the 484 
root nodules of legumes, which harbor nitrogen-fixing bacteria. In this system with a reduced 485 
number of symbionts involved, the functioning, distribution, and to some extent the evolution of 486 
these nodules, are now well understood (Epihov et al. 2017). The integration of this knowledge 487 
into agricultural practices has led to substantial yield improvements (e.g., Kavimandan 1985; 488 
Alam et al. 2015)(e.g. Kavimandan 1985; Alam et al. 2015). In the more diffuse and partner-rich 489 
system of mycorrhizal symbioses between plant roots and soil fungi, a better understanding of 490 
the interactions has also been achieved via the investigation of environmental diversity patterns 491 
in combination with experimental culture systems with reduced diversity (van der Heijden et al. 492 
2015).  493 

We consider it essential to implementWe advocate the implementation of comparable 494 
efforts in marine sciences through interdisciplinary research combining physiology, 495 
biochemistry, ecology, and mathematicalcomputational modeling. A key factor here will be the 496 
identification and development of newtractable model systems for keystone holobionts that will 497 
allow the hypotheses generated by large-scale data sets to be tested in controlled experiments. 498 
Such approaches will enable the identification of commonorganismal interaction patterns 499 
between organisms within holobionts and nested ecosystems. In addition to answering 500 
fundamental questions, they will help address the ecological, societal, and ethical issues that 501 
arise from attempting to actively manipulate holobionts (e.g.,. in aquaculture, conservation) in 502 
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order to enhance their resilience and protect them from the impacts of global change (Llewellyn 503 
et al. 2014). 504 

Emerging methodologies to approach the complexity of holobiont 505 
partnerships 506 

As our conceptual understanding of the different levels of holobiont organization evolves, 507 
so does the need for multidisciplinary approaches and the development of tools and technologies 508 
to handle the unprecedented amount of data and their integration into dedicated ecological and 509 
evolutionary models. Here, progress is often fast-paced and provides exciting opportunities to 510 
address some of the challenges in holobiont research.  511 

Notably, aA giant technological stride has been the explosion of affordable ‘–omics’ 512 
technologies allowing molecular ecologists to move from metabarcoding (i.e.,. sequencing of a 513 
taxonomic marker) to metagenomics or single-cell genomics in the case of unicellular hosts, 514 
metatranscriptomics, and metaproteomics, thus advancing our understandingresearch from 515 
phylogenetic to functional analyses of the holobiont (Bowers et al. 2017; Meng et al. 2018). 516 
These approaches are equally useful in marine and in terrestrial environments, but the existence 517 
of numerous poorly studied lineages in the former make the generation of good annotations and 518 
reference databases an additional challenge for marine biologists.(Bowers et al. 2017; Meng et 519 
al. 2018; Figure 4). These approaches are equally useful in marine and in terrestrial 520 
environments, but the scarcity of well-studied lineages in the former makes the generation of 521 
good annotations and reference databases challenging for marine biologists. Metaproteomics 522 
combined with stable isotope fingerprinting can help study the metabolism of single species 523 
within the holobiont (Kleiner et al. 2018). In parallel, meta-metabolomics approaches have 524 
advanced over the last decades, and can be used to unravel the chemical interactions between 525 
partners. One current limitation here, especially in particularly relevant to marine systems, is that 526 
many compounds are still undescribed inoften not referenced in the mostly terrestrial-based 527 
databases and are present in low quantities in natural environments, although recent 528 
technological advances such as molecular networking and meta-mass shift chemical profiling to 529 
identify relatives of known molecules promise significant advancementmay help to overcome 530 
this challenge (Hartmann et al. 2017).  531 

A further challenge in holobiont research is to identify the origin of compounds among 532 
the different partners of the holobionts and to determine their involvement in the maintenance 533 
and performance of the holobiont system. Well-designed experimental setups may help answer 534 
some of these questions (e.g., Quinn et al. 2016), but they will also require high levels of 535 
replication due to extensive intra-species variability.(e.g. Quinn et al. 2016), but they will also 536 
require high levels of replication in order to represent the extensive intra-species variability 537 
found in marine systems. Recently developed in vivo and in situ imaging techniques combined 538 
with ‘omics’ approaches can provide spatial and qualitative information (origin, distribution, and 539 
concentration of a molecule or nutrient), shedding new light on the role of each partner of the 540 
holobiont system at the subcellularmolecular level. The combination of stable isotope labelling 541 
and chemical imaging (mass spectrometry imaging such as secondary ion mass spectrometry and 542 
matrix-assisted laser desorption ionization, and synchrotron X-ray fluorescence) is particularly 543 
valuable in this context, as it enables the investigation of metabolic exchange between the 544 
different components of a holobiont (Musat et al. 2016; Raina et al. 2017). Finally, three-545 
dimensional electron microscopy may help evaluate to what extent different components of a 546 
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holobiont are physically integrated (Colin et al. 2017; Decelle et al. 2019), where high 547 
integration is one indication of highly specific interactions. All of these techniques can be 548 
employed in both marine and terrestrial systems, but in marine systems the high phylogenetic 549 
diversity of organisms adds to the complexity of adapting and optimizing thethese techniques. 550 

One consequence of the development of such new methods is the feedback they provide 551 
to improve existing models andor to develop entirely new ones, for examplee.g. by 552 
conceptualizing holobionts as the sumcombination of the interactions between the host and its 553 
microbiota (Skillings 2016; Berry and Loy 2018), or by redefining boundaries between the 554 
holobiont and the ecosystemits environment (Zengler and Palsson 2012). Such models may 555 
incorporate metabolic complementarity between different components of the holobiont (Dittami 556 
et al. 2014; Bordron et al. 2016), simulate microbial communities starting from different cohorts 557 
of randomly generated microbes for comparison with actual metatranscriptomics and/or 558 
metagenomics data (Coles et al. 2017), or even employ machine learning techniques to predict 559 
host-associated microbial communities (Moitinho-Silva et al. 2017).  560 

A side-effect of these recent developments has been to shift the focus ofmove holobiont 561 
research away from laboratory culture-based experiments. We argue that maintaining cultivation 562 
efforts to capture the maximum holobiont biodiversity possible remains essential in order to 563 
experimentally test hypotheses and investigate physiological mechanisms. A striking example of 564 
the importance of laboratory experimentation is the way germ-free mice re-inoculated with 565 
cultivated bacteria (the so-called gnotobiotic mice) have contributed to the understanding of 566 
interactions within the holobiont in animal health and, physiology, and behavior (e.g., Faith et al. 567 
2014; Selosse et al. 2014)(e.g. Neufeld et al. 2011; Faith et al. 2014; Selosse et al. 2014). 568 
Innovations in cultivation techniques for axenic (or germ-free) hosts (e.g., Spoerner et al. 569 
2012)(e.g. Spoerner et al. 2012) or in microbial cultivation such as microfluidic systems (e.g., 570 
Pan et al. 2011)(e.g. Pan et al. 2011) and cultivation chips (Nichols et al. 2010) may provide a 571 
way to obtain pure cultures. Yet, bringing individual components of holobionts into cultivation 572 
can still be a daunting challenge due to the strong interdependencies between organisms as well 573 
as the existence of yet unknown metabolic processes that may createhave specific requirements. 574 
In this context, single-cell omics'-omics' analyses can provide critical information on some of the 575 
growth requirements of the organisms, and can complement approaches of high-throughput 576 
culturing (Gutleben et al. 2018). Established cultures can then be developed into model systems, 577 
e.g. by genome sequencing and the development of genetic tools, in order to move towards 578 
mechanistic understanding and experimental testing of hypothetical processes within the 579 
holobiont derived from environmental meta‘-omics’ approaches. A few such model systems have 580 
already been mentioned above, but omics'-omics' techniques canhave the potential to broaden the 581 
range of available models, enabling generalizations abouta better understanding of the 582 
functioning of marine holobionts and their interactions in marine environments (Wichard and 583 
Beemelmanns 2018). 584 

Ecosystem services and holobionts in natural and managed systems 585 

A better understanding of marine holobionts will likely have direct socioeconomic 586 
consequences for coastal marine ecosystems, which have been estimated to provide services 587 
worth almost 50 trillion (1012) US$ per year (Costanza et al. 2014). Most of the management 588 
practices in marine systems have so far been based exclusively on the biology and ecology of 589 
macro-organisms. A multidisciplinary approach that provides mechanistic understanding of 590 
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habitat-forming organisms as holobionts will ultimately improve the predictability and 591 
management of coastal ecosystems. For example, host-associated microbiota could be integrated 592 
into thein biomonitoring programs as proxies used to assess the health of ecosystems. Microbial 593 
shifts and dysbiosis constitute early warning signals that may allow managers to predict potential 594 
impacts and intervene more rapidly and effectively (van Oppen et al. 2017; Marzinelli et al. 595 
2018).(van Oppen et al. 2017; Marzinelli et al. 2018).  596 

One form of intervention could be to promote positive changes of host-associated 597 
microbiotasmicrobiota, in ways analogous to the use of pre- and/or probiotics in humans (Singh 598 
et al. 2013) or inoculation of beneficial microbes in plant farming (Berruti et al. 2015; van der 599 
Heijden et al. 2015). In macroalgae, beneficial bacteria identified from healthy seaweed 600 
holobionts could be used as biological control agents and applied to diseased plantlets in order 601 
to suppress the growth of detrimental ones and/or to prevent disease outbreaks in aquaculture 602 
settings. In addition to bacteria, these macroalgae frequently host endophytic fungi that may have 603 
protective functions for the algae (Porras-Alfaro and Bayman 2011; Vallet et al. 2018). Host-604 
associated microbiota could also be manipulated to shape key phenotypes in cultured marine 605 
organisms. For example, specific bacteria associated with microalgae may enhance algal growth 606 
(Amin et al. 2009; Kazamia et al. 2012; Le Chevanton et al. 2013), increase lipid content (Cho et 607 
al. 2015), and participate in the bioprocessing of algal biomass (Lenneman et al. 2014). More 608 
recently, the active modification of the coral microbiota has even been advocated as a means to 609 
boost the resilience of the holobiont to climate change (van Oppen et al. 2015; Peixoto et al. 610 
2017), an approach which would, however, bear a high risk of unanticipated and unintended 611 
ecological consequences.  612 

Finally, one could implement holistic approaches in the framework of fish farms. Recent 613 
developments including integrated multi-trophic aquaculture, recirculating aquaculture, offshore 614 
aquaculture, species selection, and breeding increase yields and reduce the resource constraints 615 
and environmental impacts of intensive aquaculture (Klinger and Naylor 2012). However, the 616 
intensification of aquaculture often goes hand in hand with increased disease outbreaks both in 617 
industry and wild stocks. A holistic microbial management approach may provide an efficient 618 
solution to these latter problems (De Schryver and Vadstein 2014).  619 

Nevertheless, when considering their biotechnological potential, it should also be noted 620 
that marine microbiota are likely to be vulnerable to anthropogenic influences and that their 621 
deliberate engineering, introduction from exotic regions, or inadvertent perturbations may have 622 
profound, and yet entirely unknown, consequences for marine ecosystems. Terrestrial 623 
environments provide numerous examples of unwanted plant expansions or ecosystem 624 
perturbations linked to microbiota (e.g., Dickie et al. 2017), and cases where holobionts 625 
manipulated by human resulted in pests (e.g., Clay and Holah 1999) call for a cautious and 626 
ecologically-informed evaluation of holobiont-based technologies. 627 

Nevertheless, when considering their biotechnological potential, it should also be noted 628 
that marine microbiota are likely vulnerable to anthropogenic influences and that their deliberate 629 
engineering, introduction from exotic regions, or inadvertent perturbations may have profound, 630 
and yet entirely unknown, consequences for marine ecosystems. Terrestrial environments 631 
provide numerous examples of unwanted plant expansions or ecosystem perturbations linked to 632 
microbiota (e.g. Dickie et al. 2017), and cases where holobionts manipulated by human resulted 633 
in pests (e.g. Clay and Holah 1999) call for a cautious and ecologically-informed evaluation of 634 
holobiont-based technologies in marine systems. 635 
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Conclusions 636 

Marine ecosystems represent highly connected reservoirs of largely unexplored 637 
biodiversity. They are of critical importance to feed the ever-growing world population, 638 
constitute significant players in global biogeochemical cycles but are also threatened by human 639 
activities and global change. In order to unravel some of the basic principles of life and its 640 
evolution, and to protect and sustainably exploit marine natural resources, it is paramount to 641 
consider the complex biotic interactions that shape the marine communities and their 642 
environment. The scope of these interactions ranges from simple molecular signals between two 643 
partners to, to complex assemblies assemblages of eukaryotes, prokaryotes, and viruses with one 644 
or several hosts, or even entire ecosystems. Accordingly, current key questions in marine 645 
holobiont research cover a wide range of topics: What are the exchanges that occur between 646 
different partners of the holobiont, and what are the cues and signals driving these exchanges? 647 
What are the relevant units of selection in marine holobionts? How do holobiont systems and the 648 
interactions within them change over time and in different conditions? How do such changes 649 
impact ecological processes? How can this knowledge be applied to our benefit and where do we 650 
need to draw limits? Identifying and consolidating key model systems while adapting emerging 651 
“-omics”, imaging, and culturing technologies to them will be critical to the development of 652 
“holobiont-aware” ecosystem models.  653 

We believe that the concept of holobionts will be most useful and heuristic if used with a 654 
degree of malleability. It does not only represent the fundamental fact that all living organisms 655 
have intimate connections with their immediate neighbors, which may impact all aspects of their 656 
biology, but also enables us to define units of interacting organisms that are most suitable to 657 
answer specific scientific, societal, and economic questions. The consideration of the holobiont 658 
concept marks a paradigm shift in biological and environmental sciences, but only if scientists 659 
work together as an (inter)active and transdisciplinary community bringing together holistic and 660 
mechanistic views. This will result in tangible outcomes including a better understanding of 661 
evolutionary and adaptive processes, improved modeling of habitats and biogeochemical cycles, 662 
andas well as application of the holobiont concept in aquaculture and ecosystem management 663 
projects. 664 
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 697 
Figure 1. Partners forming marine holobionts are widespread across the tree of life including all 698 
kingdoms (eukaryotes, bacteria, archaea, viruses), and represent a large diversity of potential 699 
models for exploring complex biotic interactions across lineages. Plain lines correspond to 700 
holobionts referred to in the present manuscript. Dashed lines are examples of potential 701 
interactions. Photo credits: Archaeplastida - C. Leblanc, U Cardini; Cryptophyta, Excavata, 702 
Amoebozoa – Roscoff Culture Collection; Stramenopila – C. Leblanc, S. M. Dittami, H. 703 
KleinJan; Alveolata – A. M. Lewis; Rhizaria – F. Not; Haptophyta – A. R. Taylor; 704 
Opisthonkonta – C. Frazee, M. McFall-Ngai, W. Thomas, L. Thiault; Bacteria - E Nelson, L 705 
Sycuro, S. M. Dittami, S. Le Panse, Planktomania; Archaea – National Space Science Data 706 
Center., Xiaoyu Xiang; Viruses M. B. Sullivan et al.. 707 
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 710 
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 715 
 716 
Figure 2. Schematic view of the “Russian Doll” complexity and dynamics of holobionts, 717 
according to diverse spatiotemporal scales. The host (blue circles), and associated microbes  718 
(all other shapes) including bacteria and eukaryotes that may be inside (i.e.,. endosymbiotic or 719 
outside the host, i.e. ectosymbiotic, are connected by either beneficial (solid orange lines), 720 
neutral (solid blue lines) or pathogenic (dashed black lines) interactions respectively. Changes 721 
from beneficial or neutral to pathogenic interactions are typical cases of dysbiosis. The different 722 
clusters can be illustrated by the following examples: 1, a model holobiont in a stable 723 
physiological condition (e.g.,. in controlled laboratory condition); 2 and 3, holobionts changing 724 
during their life cycle or submitted to stress conditions – examples of vertically transmittedssions 725 
of microbes are indicated by light blue arrows; 4 and 5, marine holobionts in the context of 726 
global sampling campaigns or long-term time series – examples of horizontal transmission of 727 
microbes and holobionts are illustrated by pink arrows. 728 
 729 
 730 
 731 
 732 
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 734 
 735 
Figure 3: Mind map of key concepts, techniques, and challenges related to marine holobionts. 736 
The basis of this map was generated during the Holomarine workshop held in Roscoff in 2018 737 
(https://www.euromarinenetwork.eu/activities/HoloMarine). The size of the nodes reflects the 738 
number of votes each keyword received from the participants of the workshop (total of 120 votes 739 
from 30 participants). The two main clusters corresponding to predictive modeling and 740 
mechanistic modeling, are displayed in purple and turquoise, respectively. Among the 741 
intermediate nodes linking these disciplines (blue) “potential use, management” was the most 742 
connected. 743 
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 745 
Figure 4: Impact of emerging methodologies (green) on the main challenges in marine holobiont 746 
research identified in this paper. 747 
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